Hints on $\tau_{\frac{1}{2}}(1)$ from the non-leptonic modes

Damir Becirevic

Laboratoire de Physique Théorique, Orsay

Puzzle

- Problem with broad $(1 / 2)^{+}$-states $\left[0^{+}, 1^{+}\right]$
\ln QCD $1_{1 / 2}^{+}$and $1_{3 / 2}^{+} \mathrm{mix} \rightarrow$ focus on $0^{+} \equiv D_{0}^{*}$
- SL decays:

$$
\begin{array}{rll}
\mathcal{B}\left(B \rightarrow D_{0}^{*} \ell \nu\right) & \sim 10^{-3} \quad[\text { BaBar, Belle }] \\
& \sim 10^{-4} \quad[\text { predicted }]
\end{array}
$$

combined with
BaBar $\quad \mathcal{B}\left(B \rightarrow D_{0}^{*} \ell \nu\right) \approx \mathcal{B}\left(B \rightarrow D_{3 / 2}^{* *} \ell \nu\right)$

$$
\tau_{1 / 2}(1) \approx \tau_{3 / 2}(1) \quad \mathrm{Sic}!
$$

Belle $\quad \mathcal{B}\left(B \rightarrow D_{0}^{*} \ell \nu\right)>\mathcal{B}\left(B \rightarrow D_{1}^{1 / 2} \ell \nu\right)$ unprecedented HQS breaking - Sic!

Non-leptonics can help

- F.Jugeau et al. 2005, H.Y.Cheng 2003

Class-I decays obey factorization - use it!
[exact in $m_{b} \rightarrow \infty$, Beneke et al. 2000]

$A\left(\bar{B}^{0} \rightarrow D_{0}^{*+} \pi^{-}\right)=\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u d}^{*} \times a_{1} \times f_{\pi}\left(m_{B}^{2}-m_{D_{0}^{*}}^{2}\right) F_{0}^{B \rightarrow D_{0}^{*}}\left(m_{\pi}^{2}\right)$

- Works even for $B^{0} \rightarrow D^{(*)+} \pi^{-}$and $B^{0} \rightarrow D^{(*)+} D^{-}$
D.B. et al. $2012{ }^{\bar{z}}$

$$
\tau_{\frac{1}{2}}\left(w_{0}\right)
$$

$-F_{0}^{B \rightarrow D_{0}^{*}}\left(m_{\pi}^{2}\right) \propto \tau_{\frac{1}{2}}\left(w_{0}\right)$, where $2 m_{B} m_{D_{0}^{*}} w_{0}=m_{B}+m_{D_{0}^{*}}-m_{\pi}^{2}$

$$
A\left(\bar{B}^{0} \rightarrow D_{0}^{*+} \pi^{-}\right)=\left.\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u d}^{*} a_{1} f_{\pi} m_{B}^{2} \frac{(1+r)(1-r)^{2}}{\sqrt{r}} \tau_{\frac{1}{2}}\left(w_{0}\right)\right|_{r=\frac{m_{0}^{*}}{m_{B}^{*}}}
$$

- $w_{0}=1.36(1) \rightarrow 1$, use Morenas et al. 1997 (confirmed by others)

$$
\tau_{\frac{1}{2}}(w)=\tau_{\frac{1}{2}}(1)\left(\frac{2}{1+w}\right)^{5 / 3} \Rightarrow \tau_{\frac{1}{2}}\left(w_{0}\right)=0.76(1) \times \tau_{\frac{1}{2}}(1)
$$

- $\tau_{\frac{1}{2}}(1) \simeq 0.26$ for $a_{1}=1.15$ - indeed small

Class III can help too - New

- Extra diagram (OZI allowed)

$$
A\left(\bar{B}^{-} \rightarrow D_{0}^{* 0} \pi^{-}\right)=A_{1}+\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u d}^{*} \times a_{2} \times f_{D_{0}^{*}}\left(m_{B}^{2}-m_{\pi}^{2}\right) F_{0}^{B \rightarrow \pi}\left(m_{D_{0}^{*}}^{2}\right)
$$

Class III can help too - New (cont.)

- MtmQCD on the lattice has its own problems at $a \neq 0$, but once one takes the continuum limit, the results are safe and sound.
- With $N_{\mathrm{f}}=2,4$ latt.spacings, many sea quark masses

$$
f_{D_{0}^{*}}=141 \pm 17 \mathrm{MeV}
$$

- Therefore,

$$
\left[\frac{\mathcal{B}\left(B^{-} \rightarrow D_{0}^{* 0} \pi^{-}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D_{0}^{*+} \pi^{-}\right)}\right]^{1 / 2}=1+\left.\frac{a_{2}}{a_{1}} \frac{f_{D_{0}^{*}}}{f_{\pi}} \frac{\sqrt{r}}{(1+r)(1-r)^{2}} \frac{F_{0}^{B \rightarrow \pi}\left(m_{D_{0}^{*}}^{2}\right)}{\tau_{\frac{1}{2}}\left(w_{0}\right)}\right|_{r=\frac{m_{D_{0}^{*}}}{m_{B}}}
$$

Class III can help too - New (cont.)

- Using $F_{0}^{B \rightarrow \pi}\left(m_{D_{0}^{*}}^{2}\right)=0.30(3), a_{1}=1.15, a_{2}=0.26$, we have

$$
\begin{aligned}
& {\left[\frac{\mathcal{B}\left(B^{-} \rightarrow D_{0}^{* 0} \pi^{-}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D_{0}^{*+} \pi^{-}\right)}\right]_{\exp .}^{1 / 2}=1+\frac{a_{2}}{a_{1}} \frac{f_{0}^{*}}{f_{\pi}} \frac{\sqrt{r}}{(1+r)(1-r)^{2}} \frac{F_{0}^{B \rightarrow \pi}\left(m_{D_{0}^{*}}^{2}\right)}{\tau_{\frac{1}{2}}\left(w_{0}\right)}} \\
& {\left[\frac{(9.6 \pm 2.7) \times 10^{-4}}{(1.0 \pm 0.5) \times 10^{-4}}\right]^{1 / 2}=1+\frac{0.43(4)}{\tau_{\frac{1}{2}}(1)}} \\
& \quad \Rightarrow \quad 0.15 \leq \tau_{\frac{1}{2}}(1) \leq 0.38
\end{aligned}
$$

- Exp. errors dominant. D_{0}^{*} is broad and to discern it from the rest is difficult, often ambiguous if not impossible (continuum?)

B_{s}-decays - best environment for this research

- $B_{s} \rightarrow D_{s}^{* *} \ell \nu$ would be the best (Super-Belle, Super-B) Understand how $\mathcal{B}\left(B^{0} \rightarrow X_{c} \ell \nu\right)=10.1(2) \%$ is saturated via the similar study of $\mathcal{B}\left(B_{s} \rightarrow X_{c} \ell \nu\right)$.
- $B_{s} \rightarrow D_{s}^{* *} \pi$ would be interesting too: $D_{s 0}^{*}$ and $D_{s 2}^{*}$ are narrow!
- The last can be studied at LHCb!

Knowing that $\mathcal{B}\left(D_{s 0}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right)=(97 \pm 3) \%$, study

$$
\begin{aligned}
B_{s} \rightarrow & D_{s 0}^{*-} \pi^{+} \\
& D_{s 0}^{*-} \rightarrow \\
& D_{s}^{-} \pi^{0} \\
& D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}
\end{aligned}
$$

Measure missing $p_{\pi^{0}}$ using the known direction of B_{s} and 2 mass constraints, $m_{\pi^{0}}$ and $m_{B_{s}}$
B_{s}-decays - best environment for this research [c.f. arXiv:1206.5869 [hep-ph]]

- $B_{s} \rightarrow D_{s}^{* *} \pi$ from LHCb

Signal events: peak in $D_{s}^{-} \pi^{0}$ mass distribution

$$
\mathcal{N}\left(B_{s}^{0} \rightarrow D_{s 0}^{*-}(2317) \pi^{+}\right)=600 \times\left(1 \pm \frac{1}{2}\right) \times \mathcal{B}\left(D_{s 0}^{*-} \rightarrow D_{s}^{-} \pi^{0}\right) \times \epsilon_{\pi^{0}}
$$

- LHCb see $6000 B_{s} \rightarrow D_{s}^{-} \pi^{+}$events $0.33 \mathrm{fb}^{-1}$ from LHCb $\Rightarrow 18000 \quad 1 \mathrm{fb}^{-1}$
Assume $\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s 0}^{*-} \pi^{+}\right)=\mathcal{B}\left(B^{0} \rightarrow D_{0}^{*-} \pi^{+}\right)=1.0(5) \times 10^{-4}$, divide by $\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{*-} \pi^{+}\right) \approx 3 \times 10^{-3}$ [LHCb]

B_{s}-decays - best environment for this research [c.f. arXiv:1206.5869 [hep-ph]]

- $B_{s} \rightarrow D_{s}^{* *} \pi$ from LHCb [Monte Carlo test!]

- expect a couple of hundreds of signal events $/ \mathrm{fb}^{-1}$

LHCb already have $3 \mathrm{fb}^{-1}$: possibility for a clean measure!
Imploring our experimental friends: Please measure this!

