

Observation of new resonances decaying to $D\pi$ and $D^*\pi$

Till Moritz Karbach¹ for the Babar collaboration

¹TU Dortmund (Germany) and CERN

Workshop: Decay B → D** and related issues Paris, November 26–28 2012

moritz.karbach@cern.ch

The spectrum of charmed mesons

- The spectroscopy of D mesons is still poorly known.
- The bound states of a *c* quark and a *u* or *d* quark were predicted using QCD potential models in 1985.
- Only the ground states D and D* and the narrow L=1 states are well known.
- Observations of higher states have been hindered by poor statistics and their relatively large widths.

[Plot: S. Godfrey and N. Isgur PRD 32, 189 (1985)]

Results in this presentation: **Phys.Rev., D82:111101, 2010.**

The spectrum of charmed mesons

new states in $D\pi$ and $D^*\pi$, BaBar

Decay properties of the excited states

Excited states decay primarily through single pion emission to $D\pi$ or $D^*\pi$.

Analysis overview

• Perform an inclusive reconstruction of $D\pi$ and $D^*\pi$ produced from $c\overline{c}$ events: D, D*

$$e^+e^- \to c\bar{c} \to D^{**}X \to D^{(*)}\pi X$$

• The following 4 channels are reconstructed:

any additional system

• The data set consists of 454 fb⁻¹ (~590 Million $e^+e^- \rightarrow c\bar{c}$ events)

$D^+\pi^-$ mass spectrum

- The known signals are modeled using Breit-Wigner functions corrected with angular momentum form factors and phase-space factors.
- Simple Breit-Wigners for the new signals.
- Shape corrections due to resolution and varying efficiency are applied.
- Two additional signals at 2600 and 2760 MeV/c²!

Resonance

 $D_2^*(2460)^0$

 $D^*(2600)^0$

 $D^*(2760)^0$

 $2608.7 \pm 2.4 \pm 2.5$

 $2763.3 \pm 2.3 \pm 2.3$

background

new

 $26.0 \pm 1.4 \pm 6.6$

 $11.3 \pm 0.8 \pm 1.0$

 $93\pm 6\pm 13$

 $60.9 \pm 5.1 \pm 3.6$

$D^0\pi^+$ mass spectrum

- We observe similar additional signals.
- In this channel the feeddown backgrounds are stronger and the statistics of this channel are smaller so the widths of all signals are fixed to the widths measured in $D^+\pi^-$.
- Mass values are slightly higher than in D⁺π⁻ consistent with being the isospin partners.

 χ^2 /NDF = 278/224

-				
-	Resonance	Yield $(\times 10^3)$	$M({ m MeV}/c^2)$	$\Gamma ({ m MeV})$
	$D_2^*(2460)^+$	$110.8 \pm 1.3 \pm 7.5$	$2465.4 \pm 0.2 \pm 1.1$	50.5 (fixed)
	$D^{*}(2600)^{+}$	$13.0 \pm 1.3 \pm 4.5$	$2621.3 \pm 3.7 \pm 4.2$	93 (fixed)
evv evv	$D^{*}(2760)^{+}$	$5.7\pm0.7\pm1.5$	$2769.7 \pm 3.8 \pm 1.5$	60.9 (fixed)

nev

Analysis of $D^*\pi$

Initial fit to $D^{*+}\pi^{-}$

- The fit uses the same background model as in the D⁺π⁻ fit.
- The parameters of the D₂*(2460)⁰ are fixed from the D⁺π⁻ fit.
- Two new signals, "D(2600)" and D(2750)⁰, are included in this initial fit.

Definition of the helicity variable

- In addition to analyzing the mass spectra we extract the angular distributions in the helicity angle $\cos\theta_{\rm H}$.
- In the D^{*+} rest frame the D^{*+} spin state cannot have a z-component. Thus different values of the parent's J^{P} are distinguished by the intensity of the signal as a function of $\cos\theta_{H}$.

Helicity distributions of the predicted states. The A coefficients are due to mixing and need to be determined from experiment.

Label	PDG Name	J^P	$D\pi$	Partial	$D^*\pi$	Partial	$D^*\pi$	Helicity
$D_J^{2S+1}(nL)$			Waves		Waves	5	Distrib	ution
$D_1^1(1P)$	$D_1(2420)$	1^{+}	-		$^{\rm S,D}$		$\propto 1 + 1$	$Acos^2(\theta)$
$D_0^3(1P)$	$D_0^*(2400)$	0^+	S		-		-	
$D_1^{\bar{3}}(1P)$	$D_1'(2430)$	1^{+}	-		$^{\rm S,D}$		$\propto 1 + 1$	$Acos^2(\theta)$
$D_2^3(1P)$	$D_2^*(2460)$	2^{+}	D		D		$\propto sin^2$	(θ)
$D_{2}^{1}(1D)$		2^{-}	-		P,F		$\propto 1 + 1$	$Acos^2(\theta)$
$D_1^{\bar{3}}(1D)$		1-	Р		Р		$\propto sin^2$	(θ)
$D_2^3(1D)$		2^{-}	-		P,F		$\propto 1 + 1$	$Acos^2(\theta)$
$D_{3}^{3}(1D)$		3^{-}	\mathbf{F}		\mathbf{F}		$\propto sin^2$	(θ)
$D_0^1(2S)$		0-	-		Р		$\propto cos^2$	(θ)
$D_1^3(2S)$		1-	Р		Р		$\propto sin^2$	(θ)

new states in $D\pi$ and $D^*\pi$, BaBar

Problem with initial fit model

seems to shift.

Data divided by helicity angle. "D(2600)" peak

- The "D(2600)" peak shifts as a function of the helicity angle.
- The other signals are stable.

Mass (GeV/c²)

This implies that this peak might be composed of two signals!

Problem with initial fit model

Strategy to fix the initial model:

labels correspond to the mass plots

- 1. Assume $D^*(2600)^0$ is same as observed in $D^+\pi^-$ and fix its parameters.
- 2. Introduce another signal: $D(2550)^0$
- 3. Apply a restrictive helicity cut, $|\cos\theta_{\rm H}| > 0.75$, to enhance the $D(2550)^0$ contribution and determine its parameters ("Fit C").
- 4. Perform a complementary fit by requiring $|\cos\theta_{\rm H}| < 0.5$, with the $D^*(2600)^0$ parameters left free and those of $D(2550)^0$ fixed ("Fit D").
- 5. Perform full fit with new model, without cutting on $\cos\theta_{\rm H}$ ("Fit E").

Extraction of D(2550)⁰ signal

- A cut $|\cos\theta_{\rm H}| > 0.75$ is applied.
- We include one more signal around 2.55 GeV/c² into the fit.
- The parameters of D₂*(2460)⁰ and D*(2600)⁰ are fixed to the ones from D⁺π⁻.

 $|\cos \theta_H| > 0.75$ $\chi^2/\text{NDF} = 214/205$

Resonance	Yield $(\times 10^3)$	$M ({ m MeV}/c^2)$	$\Gamma ({ m MeV})$
$D_1(2420)^0$	$102.8 \pm 1.3 \pm 2.3$	$2420.1 \pm 0.1 \pm 0.8$	$31.4\pm0.5\pm1.3$
$D(2550)^{0}$	$34.3\pm6.7\pm9.2$	$2539.4 \pm 4.5 \pm 6.8$	$130\pm12\pm13$

Complementary fit for D*(2600)⁰

- Now an opposite cut is applied: $|\cos\theta_{\rm H}| < 0.5$.
- The D*(2600)⁰ significance is 7.3σ.

 $\cos \theta_H | < 0.5$ $\chi^2 / \text{NDF} = 210/209$

Resonance	Yield $(\times 10^3)$	$M ({ m MeV}/c^2)$	$\Gamma ({ m MeV})$
$D^*(2600)^0$	$50.2 \pm 3.0 \pm 6.7$	2608.7 (fixed)	93 (fixed)

Final fit to $D^{*+}\pi^{-}$

- The parameters of the D₁(2420)⁰ and D(2550)⁰ are fixed to the ones found in the fit with the helicity cut.
- The parameters of $D_2^*(2460)^0$ and $D^*(2600)^0$ are constrained to the ones from $D^+\pi^-$.
- We obtain final parameters for the D(2750)⁰ from this fit.

_		0	$ \cos heta_H < 1$ χ^2/NDF	= 244/207
-	Resonance	Yield $(\times 10^3)$	$M({ m MeV}/c^2)$	$\Gamma({ m MeV})$
	$D_1(2420)^0$	$214.6 \pm 1.2 \pm 6.4$	2420.1 (fixed)	31.4 (fixed)
	$D(2550)^{0}$	$98.4\pm8.2\pm38$	2539.4 (fixed)	130 (fixed)
	$D^*(2600)^0$	$71.4\pm1.7\pm7.3$	2608.7 (fixed)	93 (fixed)
	$D(2750)^{0}$	$23.5\pm2.1\pm5.2$	$2752.4 \pm 1.7 \pm 2.7$	$71\pm 6\pm 11$

new

Helicity distributions

- The helicity distribution for the known resonances $D_1(2420)^0$ and $D_2^*(2460)^0$ are as expected.
- For $D(2550)^0$, a $\cos^2(\theta_H)$ distribution is obtained, consistent with the radial excitation of the D^0 .
- For $D^*(2600)^0$, a $\sin^2(\theta_H)$ is obtained, consistent with the radial excitation of the D^{*0} .
- For the signal D(2750)⁰, the distribution is not easily interpreted. It could be a composite peak; the L=2 states could be fitting candidates.

new states in $D\pi$ and $D^*\pi$, BaBar

Signal Yield / 0.2

Overview of results

The signals observed in this analysis are shown in the plot and are qualitatively consistent with the predictions.

[Underlying plot: S. Godfrey and N. Isgur PRD 32, 189 (1985)]

Conclusions

- We have analyzed the inclusive final states $D^+\pi^-$, $D^0\pi^+$, and $D^{*+}\pi^-$ in search for unobserved excited D mesons.
- In $D^+\pi^-$ we find **two new signals** with masses at about 2610 MeV/c² and 2760 MeV/c². The isospin partner signals are confirmed in $D^0\pi^+$.
- In $D^{*+}\pi^-$ we find three new signals at about 2530 MeV/c², 2610 MeV/c² and 2750 MeV/c². We assume the signal at 2610 MeV/c² is the same as in $D^+\pi^-$.
- The helicity distributions indicate that the signal at 2530 MeV/c² may be identified as the **radial excitation** of the D⁰. Similarly, the signal at 2610 MeV/c² may be identified as the radial excitation of the D*⁰. Finally, the helicity distribution of the signal at 2750 MeV/c² indicates this signal may be composite, the L=2 excitations could be fitting candidates.
- The mass values are similar to the predicted states.

Thanks to Jose Benitez, these slides are largely based on his.

D_{sJ} spectroscopy

new states in $D\pi$ and $D^*\pi$, BaBar

 D_{sI} spectroscopy

There is a recent measurement by LHCb: JHEP 1210 (2012) 151

new states in $D\pi$ and $D^*\pi$, BaBar

backup

fit results

TABLE I: Summary of the results. The first error is statistical and the second is systematic; "fixed" indicates the parameters were fixed to the values from Fit A or C. The significance is defined as the yield divided by its total error.

Resonance	Channel(Fit)	Efficiency (%)	Yield $(\mathbf{x}10^3)$	Mass (MeV/ c^2)	Width (MeV)	Significance
$\overline{D_1(2420)^0}$	$D^{*+}\pi^{-}$ (C)		$102.8{\pm}1.3{\pm}2.3$	$2420.1{\pm}0.1{\pm}0.8$	$31.4{\pm}0.5{\pm}1.3$	
	$D^{*+}\pi^{-}$ (E)	1.09 ± 0.03	$214.6{\pm}1.2{\pm}6.4$	2420.1(fixed)	31.4(fixed)	
$\overline{D_2^*(2460)^0}$	$D^+\pi^-$ (A)	1.29 ± 0.03	$242.8{\pm}1.8{\pm}3.4$	$2462.2{\pm}0.1{\pm}0.8$	$50.5{\pm}0.6{\pm}0.7$	
	$D^{*+}\pi^-$ (E)	1.12 ± 0.04	$136{\pm}2{\pm}13$	2462.2(fixed)	50.5(fixed)	
$D(2550)^{0}$	$D^{*+}\pi^{-}$ (C)		$34.3{\pm}6.7{\pm}9.2$	$2539.4{\pm}4.5{\pm}6.8$	$130{\pm}12{\pm}13$	3.0σ
	$D^{*+}\pi^-$ (E)	1.14 ± 0.04	$98.4 {\pm} 8.2 {\pm} 38$	2539.4(fixed)	130(fixed)	
$D^*(2600)^0$	$D^+\pi^-$ (A)	1.35 ± 0.05	$26.0{\pm}1.4{\pm}~6.6$	$2608.7{\pm}2.4{\pm}2.5$	$93{\pm}6{\pm}13$	3.9σ
	$D^{*+}\pi^{-}$ (D)		$50.2{\pm}3.0{\pm}6.7$	2608.7(fixed)	93(fixed)	7.3σ
	$D^{*+}\pi^{-}$ (E)	1.18 ± 0.05	$71.4{\pm}1.7{\pm}7.3$	2608.7(fixed)	93(fixed)	
$D(2750)^{0}$	$D^{*+}\pi^{-}$ (E)	1.23 ± 0.07	$23.5{\pm}2.1{\pm}5.2$	$2752.4{\pm}1.7{\pm}2.7$	$71{\pm}6{\pm}11$	4.2σ
$D^{*}(2760)^{0}$	$D^+\pi^-$ (A)	1.41 ± 0.09	$11.3{\pm}0.8{\pm}1.0$	$2763.3{\pm}2.3{\pm}2.3$	$60.9{\pm}5.1{\pm}3.6$	8.9σ
$D_2^*(2460)^+$	$D^{0}\pi^{+}$ (B)		$110.8 {\pm} 1.3 {\pm} 7.5$	$2465.4{\pm}0.2{\pm}1.1$	50.5(fixed)	
$\overline{D^{*}(2600)^{+}}$	$D^0 \pi^+$ (B)		$13.0{\pm}1.3{\pm}4.5$	$2621.3 {\pm} 3.7 {\pm} 4.2$	93(fixed)	2.8σ
$D^{*}(2760)^{+}$	$D^0\pi^+$ (B)		$5.7{\pm}0.7{\pm}1.5$	$2769.7{\pm}3.8{\pm}1.5$	60.9(fixed)	3.5σ

ratios of branching ratios

$$\begin{aligned} &\frac{B(D_2^*(2460)^0 \to D^+\pi^-)}{B(D_2^*(2460)^0 \to D^{*+}\pi^-)} = 1.47 \pm 0.03 \pm 0.16, \\ &\frac{B(D^*(2600)^0 \to D^+\pi^-)}{B(D^*(2600)^0 \to D^{*+}\pi^-)} = 0.32 \pm 0.02 \pm 0.09, \\ &\frac{B(D^*(2760)^0 \to D^+\pi^-)}{B(D(2750)^0 \to D^{*+}\pi^-)} = 0.42 \pm 0.05 \pm 0.11. \end{aligned}$$