Study of Exclusive B $\rightarrow D^{(*)}\ell \nu$ Decays B $\rightarrow D\ell\nu$ and B $\rightarrow D^*\ell\nu$ B $\rightarrow D\tau\nu$ and B $\rightarrow D^*\tau\nu$

Vera Lüth SLAC - Stanford University

Workshop on B Decays into D** and Related Issues Paris, November 26-28, 2012

Semileptonic Decays at B-Factories @ 10.58 GeV

♦ Cleanest source of B mesons: $e^+e^- \rightarrow Y(4S) \rightarrow BB$ $\sigma_{Y(4S)} \approx 1.05 \, nb \qquad (24\% \text{ of } \sigma_{had})$

- Reconstruction of S.L. decays
 - charged lepton: e , μ
 - hadron: D, D*, π , ρ , ω , ..., X_c, X_u
 - v: E_{miss}, p_{miss}

$$(E_{\text{miss}}, \vec{p}_{\text{miss}}) = (E_{e^+e^-}, \vec{p}_{e^+e^-}) - \left(\sum_i E_i, \sum_i \vec{p}_i\right)$$

- Exclusive B decays:
 - kinematic variables:

$$\Delta E = E_B^* - E_{beam}^* \qquad \text{signal at} \qquad \Delta E \approx 0$$
$$m_{ES} = \sqrt{E_{beam}^{*2} - \vec{p}_B^{*2}} \qquad \text{signal at} \qquad m_{ES} \approx m_B$$

- ♦ BB tag: full reconstruction of one B decay: $B^+_{tag} \rightarrow D^- \pi^+ \pi^+$
 - Significant reduction in comb. backgrounds, improvement in E_{miss}, p_{miss}
 - Low tag efficiency , 0.2 0.5 %

bb Spectroscopy

B Factory Averages: (BFLB 2012) BF(D^{*+} ℓ ⁻ ν)= (4.83 ± 0.02_{stat} ± 0.12_{syst}) 10⁻² BF(D⁺ ℓ ⁻ ν)= (2.14 ± 0.03_{stat} ± 0.06_{syst}) 10⁻²

For BF(D^{*+ ℓ} v), there used to be a very poor agreement between measurements, now fairly good consistency !

Extraction of $|V_{cb}|$ from $B \rightarrow D^{(*)} \ell \nu$ Decays

The differential decay rate

Universal Form Factor Phase Space

$$\frac{d\Gamma(B \to D^* \ell \nu_{\ell})}{dwd\cos\theta_{\ell} d\cos\theta_{V} d\chi} = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 \eta_{EW}^2 F^2(w, \theta_{\ell}, \theta_{V}, \chi) K(w)$$

$$w \equiv \frac{M_B^2 + M_{D^*}^2 - q^2}{2M_B M_{D^*}}$$

$$\eta_{EW} = 1.0066$$

- $B \rightarrow D \ell v$: a single FF: G(w)
- $B \to D^* \ell v$: $\mathcal{F}(w, \theta_{\ell}, \theta_{\nu}, \chi)$ incorporates 3 non-trival form factors, $A_1(w), A_2(w), V(w)$
- HQ Symmetry predicts a unique universal F(w) with
 - Common shape given by ρ^2 , constraints by analyticity and unitarity
 - Normalization at zero-recoil: $\mathcal{F}(w=1)=\mathcal{G}(w=1)=1.0$ So, QCD corrections to $\mathcal{F}(1)$ and $\mathcal{G}(1)$ needed
- Extract FF parameters by fits to differential decay rates
 - $B \rightarrow D \ell v$: Fit: 1-dim. decay distribution G(w): parameters: $|V_{cb}| G(1)$ and slope ρ^2
 - $B \rightarrow D^* \ell v$: 4-dim. decay distribution $\mathcal{F}(w, \theta_{\ell}, \theta_{v}, \chi)$ parameters: $|V_{cb}| \mathcal{F}(1)$, slope ρ^2 , $R_1(w=1)$ and $R_2(w=1)$

Caprini. Lellouch, Neubert: Nucl. Phys. B530. 152 (1998)

Global Analysis of $B \rightarrow DX \ell v$ Decays w/o $B\overline{B}$ Tag

BABAR: Phys. Rev. D79, 012002 (2009)

- Select samples of $D^0\ell$ and $D^+\ell$, with $p_\ell > 1.2 \text{ GeV}$, $p_D > 0.8 \text{ GeV}$
- Global 3D fit (e , μ) to kinematic variables $p_{\ell'}$, p_D , $\cos\theta_{B-D\ell}$ to extract
 - BF measurements for $B \rightarrow D^{(*)} \ell \nu$ decays
 - FF slopes ρ_D^2 and $\rho_{D^*}^2$ with fixed input for R₁ (w) and R₂(w)
 - Constrain decay rates for B⁰ and B⁺ by isospin relations
- Syst. uncertainties dominated by
 - PID and Tracking D efficiencies (insensitive to $D^* \rightarrow D\pi$ detection) and backgrounds
 - BF for B and D decays, in particular higher-mass charm mesons

$B \rightarrow D \ell^+ \nu$ Decays from $B\overline{B}$ Tagged Events

- Analysis technique
 - Reconstruct: D decays plus e or μ (>0.6 GeV)
 - Tag BB by hadronic decay of 2nd B meson
 - Excellent resolution in q² and w (~0.01)
 - Normalization to inclusive $B \rightarrow X \ell^+ \nu$ decays
- Binned ML fit to m²_{miss} in 10 w bins, B⁺ and B⁰
- Systematic uncertainties smaller than w/o tag, dominated by
 - B, D and D*, D** BF
 - event reconstruction and yield extraction
- Fit to d Γ /dw with 2 parameters: ρ_D^2 , $\eta_{EW}G(1)$

 $\mathcal{G}(w) = \mathcal{G}(1)[1 - 8\rho_D^2 z + (51\rho_D^2 - 10)z^2 - (252\rho_D^2 - 84)z^3]$ based on CLN

Results on $B \rightarrow D \ell^+ \nu$ Decays

V. Lüth

Measurement of $B^0 \rightarrow D^{*-}\ell^+\nu$ Decays w/o $B\overline{B}$ Tag

- Most precise results from full Belle data sample (722 BB events)
- Belle: Phys. Rev. D82, 112007 (2010)
- Untagged events, only $D^*(D^0 \rightarrow K\pi) + \pi_s^- \ell^+\nu$ decays, kinematic separation
- Reconstruct B rest frame using momenta of both B

- To extract event yield, χ² fit to 4 one-dim. distributions, correlations are assessed
- free CLN parameters: $\rho_{D^*}^2$, $F(1) |V_{cb}|$, R_1 , R_2
- Dominant errors: track efficiencies (fast and slow) BF and distributions: B, D, D*, D**

Continuum subtracted On-Resonance

Signal prediction after fit

MC background, D**

MC background, Signal correlated

MC background, Uncorrelated

MC background, Fake lepton

MC background, Fake D*

Helicity Functions for $B^0 \rightarrow D^{*-}\ell^+\nu$ Decays

- Integration over angles θ_{ℓ} and χ_{τ} project out w-dependent terms g^{xy} : Transverse and Longitudinal Helicity Functions: G^{T} and G^{L} : $\frac{d^{2}\Gamma(B^{0} \rightarrow D^{*-}\ell^{+}\nu_{\ell})}{dwd\cos\theta_{V}} = F_{\Gamma}[\sin^{2}\theta_{V}(g^{++} + g^{--}) + 2\cos^{2}\theta_{V}g^{00}]$ $F_{\Gamma} = \frac{G_{F}^{2}(m_{B} - m_{D^{*}})^{2}m_{D^{*}}^{3}}{G^{T}}$
- Taking into account detection efficiencies, comparison G^T(w) and G^L(w) with the CLN parameterization obtained from the fit :

Paris, November 26-28, 2012

Extraction of FF from $D^*\ell v$ Decay Distributions

For a decay to a vector meson, the differential decay rate depends on 3 helicity amplitudes H_i, q² and angles θ_V, θ_ℓ, χ:

 $\begin{aligned} \frac{d\Gamma}{dq^2d\cos\theta_\ell d\cos\theta_V d\chi} &= \frac{3G_F^2 |V_{cb}|^2 \wp_{D^*} q^2}{8(4\pi)^4 M_B^2} \mathcal{B}_{D^*D} \times [H_+^2 (1 - \cos\theta_\ell)^2 \sin^2\theta_V + H_-^2 (1 + \cos\theta_\ell)^2 \sin^2\theta_V \\ &+ 4H_0^2 \sin^2\theta_\ell \cos^2\theta_V - 2H_+ H_- \sin^2\theta_\ell \sin^2\theta_V \cos^2\chi \\ &- 4H_+ H_0 \sin\theta_\ell (1 - \cos\theta_\ell) \sin\theta_V \cos\theta_V \cos\chi \\ &+ 4H_- H_0 \sin\theta_\ell (1 + \cos\theta_\ell) \sin\theta_V \cos\theta_V \cos\chi], \end{aligned}$

BABAR exploited angular distributions Γ(q², cos θ_V, cos θ_ℓ, χ) to enhance sensitivity to FF, and improve measurement of R₁ and R₂

Results on $B \rightarrow D^* \ell^+ \nu$ Decays

V. Lüth

Status and Outlook for $B \rightarrow D^{(*)}\ell^+\nu$

- Considerable progress in experiment and theory
 - D*lv: Untagged analyses: limited by systematics: $|V_{cb}|$: $\sigma(syst)=3\% \sigma(stat)=0.6\%$ FF predictions differ by $\Delta(theory)$: 4.7% $\sigma(theory)=2\%$
 - D $\ell\nu$: Tagged analysis: limited by statistics: $|V_{cb}|$: $\sigma(syst)=2.6\% \sigma(stat)=4.5\%$ FF predictions differ by $\Delta(theory)$: 3.2% $\sigma(theory)=2\%$
 - Differences in $BF(B \rightarrow D^* \ell v)$ reduced, and now consistent within syst. uncertainties.
- Future improvements with larger data samples
 - Full 4-dim. analysis for $D^* \ell v$ to improve sensitivity to all FF and parameterization
 - Employ fully tagged samples to reduce uncertainties on background and v reconstruction
 - Study other exclusive s.l. decays and spectroscopy of higher-mass charm mesons BF: B⁰→(D+D^{*})lv: (6.97±0.16)% B⁰→ X_Clv: (10.11±0.13)% △BF_C: (3.1±0.2)%
 - Improve QCD calculations of FF how can experimenters assist?
- Goal: 1% uncertainty on $|V_{cb}|$ challenging, but not impossible!

Exclusive vs Inclusive |V_{cb}| Measurements: Tension!!

(HFAG averages for B Factory results only)

• $|V_{cb}|$ Exclusive (D* ℓ_{v})

- expt. error: 1.4 %
- QCD normalization: 1.9 %

Inclusive

expt. error:1.1 %Theory error1.4 %

$$|V_{cb}| = (39.04 \pm 0.55 \pm 0.73) \cdot 10^{-3}$$
LQCD
$$|V_{cb}| = (40.93 \pm 0.58 \pm 0.95) \cdot 10^{-3}$$
HQSR
$$|V_{cb}| = (42.01 \pm 0.47 \pm 0.59) \cdot 10^{-3}$$

• $|V_{ub}|$ Exclusive $(\pi \ell v)$

- expt. error: 5.5 %
 LOCD normalization 7.5 %

Inclusive

- improved expt. error: 3.6 %
- much improved theory 3.9 %
- Another Problem: $B \rightarrow \tau v$

$$|V_{ub}| = (3.23 \pm 0.18 \pm 0.24) \cdot 10^{-3}$$

$$|V_{ub}| = (4.42 \pm 0.20 \pm 0.15) \cdot 10^{-3}$$

Caveat: Based on BF average of 4 low statistics BF measurements with considerable backgrounds! Wait for more data!

S.L. Decays Involving the Heavy Lepton $\boldsymbol{\tau}$

BABAR, Phys,.Rev. Lett. 109, 101802 (2012)

Study of $B \rightarrow D^{(*)}\tau \nu$ Decays

Z. Phys, C46, 93 (1990)

S.L. decays involving a τ have an additional helicity amplitude (for D^{*} $\tau\nu$):

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[\left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3m_{\tau}^2}{2q^2} H_{\rm S} \right]^2 \right]$$

For $D\tau\nu$, only H_{00} and H_S contribute!

To test the SM Prediction, we measure

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau \nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)}$$

Leptonic τ decays only

Several experimental and theoretical uncertainties cancel in the ratio!

- BB events are fully reconstructed:
 - hadronic B tag (tag efficiency improved 2x)
 - > e or μ : (extend to lower momenta, $p_{\ell}^* > 0.2$ or 0.3 GeV)
 - no additional charged particles, E_{extra} < 0.5GeV (not a cut)</p>
 - > kinematic selections: $q^2 > 4 \text{ GeV}^2$ Background suppression by BDT (combinatorial BG (BB,qq) and D** ℓ_V)
- Full BABAR data sample, MC correction based on data control samples

V. Lüth

$B \rightarrow D^{(*)} \tau \nu$: Extraction of Yields from M.L. Fit

- Unbinned M.L. fit
 - 2-D distributions:
 - 4 signal samples: $D^0\ell$, $D^{*0}\ell$, $D^+\ell$, $D^{*+}\ell$, (e or μ)
 - 4 D^(*)π⁰ℓν control samples
- PDFs from MC (approximated using KEYS fct.)
- Fitted Yields
 - 4 D^(*) τν Signal
 - 4 $D^{(*)} \ell v$ Normalization
 - 4 D**lv Background
- Fixed Backgrounds
 - B⁰–B⁺ cross feed
 - BB combinatorial BG
 - Continuum $e^+e^- \rightarrow f \overline{f(\gamma)}$

2-D PDFs Based on KEYS Functions

- 2-D m²_{miss} vs p^{*}_l, difficult to describe analytically
 - correlations
 - irregular functions
 - Solution
 - non-parametric Kernel Estimators (KEYS)
 - optimize bias vs variance (smoothing)

Blue bands mark 2 σ variations due to the stat. uncertainties of MC samples

Results of Fit: $B \rightarrow D^* \tau v$

	$D^{*0}\tau\nu$	$D^{*+}\tau\nu$	$D^* \tau \nu$
$N_{ m sig}$	639 ± 62	245 ± 27	$\frac{888 \pm 63}{2}$
Significance (σ)	11.3	11.6	16.4
$R(D^*)$	0.322 ± 0.032	0.355 ± 0.039	0.332 ± 0.024

Isospin constrained

Fixed yield

errors only

Paris, November 26-28, 2012

Results of Fit: $B \rightarrow D\tau v$

BABAR, Phys. Rev. Lett. 101802 (2012)

	$D^0 \tau \nu$	$D^+ \tau \nu$	$D\tau\nu$
$N_{ m sig}$	314 ± 60	177 ± 31	489 ± 63
Significance (σ)	5.5	6.1	8.4
R(D)	0.429 ± 0.082	0.469 ± 0.084	0.440 ± 0.058

Isospin constrained

Paris, November 26-28, 2012

Cross Check on MC for Signal and Backgrounds

Detailed comparisons of data control samples with MC

- Prior to fit (off and on resonance data) rescale distributions: p^{*}_l, m_{ES}, E_{extra}
- Post fit (unfitted distributions in signal region)

Background subtracted distributions $B \rightarrow D^{(*)}\tau\nu$ (post-fit)

Systematic Uncertainties

 $\begin{array}{c} \rho \quad \mbox{Correlation between} \\ R(D) \mbox{ and } R(D^*) \end{array}$

Principal Uncertainties:

- D^{**}l v: conservative 15% constraints and fit to Dπ sample,
- Limited MC signal samples
 2-dim PDFs with ~2000 events
- Continuum and BB background Corrections and MC statistics

Largest errors are Gaussian distributed!

Source	Uncertainty (%)		
Source	R(D)	$R(D^*)$	ρ
$D^{**}\ell\nu$ background	5.8	3.7	0.62
MC statistics	5.0	2.5	-0.48
Cont. and $B\overline{B}$ bkg.	4.9	2.7	-0.30
$\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$	2.6	1.6	0.22
Systematic uncertainty	9.5	5.3	0.05
Statistical uncertainty	13.1	7.1	-0.45
Total uncertainty	16.2	9.0	-0.27

Fit to $D^{(*)}\pi^0 \ell \nu$ Control Samples

S.M. Predictions of R(D) and R(D*)

Comparison to Previous Measurements

The new measurements are fully compatible with earlier results!

NB: Average does not include

Can we explain the excess events?

• A charged Higgs (2HDM type II) of spin 0 coupling to the τ will only affect H_s

$$H_{\rm s}^{\rm 2HDM} = H_{\rm s}^{\rm SM} \times \left(1 + \frac{\tan^2\beta}{m_{H^{\pm}}^2} \frac{q^2}{1 \mp m_c/m_b}\right) - \text{for } D\tau\nu + \text{for } D^*\tau\nu$$

This could enhance or decrease the ratios $R(D^*)$ depending on tan β/m_H

- We estimate the effect of 2HDM, accounting for difference in signal yield and efficiency.
- The data match 2HDM Type II at $tan\beta/m_{H}= 0.44 \pm 0.02$ for R(D) $tan\beta/m_{H}= 0.75 \pm 0.04$ for R(D*)
- The combination of R(D) and R(D*) excludes the Type II 2HDM in the full tanβ-m_H parameter space with a probability of >99.8%, provided M_H>15 GeV !

.008) 012)

Summary

- Studies of semileptonic decays have been challenging for both theory and experiment - considerable progress in the past decade!
- At present, there are two interesting puzzles:
 - Some "tension" between inclusive and exclusive analyses remains, while stated uncertainties on BFs and |V_{cb}| and |V_{ub}| are being reduced.
 - The search for non-SM B decay rates by BABAR has revealed a significant excess (3.4 σ) of events in B→Dτν and B→D*τν. This feature cannot be explained by contributions expected from a 2HDM Higgs of Type II, though extensions of 2HDM appear to work, as do NP processes with spin 1 coupling.
- To solve these puzzles, we need
 - more data full exploitation of current and future data @ B Factories
 - continued close collaboration between experimenters and theorists, for both inclusive and exclusive decays, with and without charm!

Merci de votre attention

Search for Charged Higgs Coupling in B Decays

	Decay	Theory	BF	Comments
$W^{-}/H^{-} \leq \frac{\tau}{\bar{v}}$ $B\{\frac{b}{\bar{q}} - \frac{c}{\bar{q}}\}D^{(*)}$	$B \to D^{(*)} \tau \nu$	Tree level 7%	1-2 %	Excellent Normalization $B \rightarrow D^{(*)} \ell v$
$B\{ \underbrace{b}{\overline{u}} \xrightarrow{W^-/H^-} \underbrace{\tau^-}_{\overline{v}_{\tau}} $	$B\to\tau\nu$	Tree level 25%	0.01% helicity suppressed	2-3 neutrinos
$B\{\frac{b}{\overline{q}} \underbrace{{}{}{}{}{}{}{\overset$	$B \to X_{s} \gamma$	Loop 7%	0.03%	Inclusive measurement, backgrounds!

Cross Checks: Fit Normalization $B \rightarrow D^{(*)} \ell v$

V. Lüth

Paris, November 26-28, 2012

Dependence of MC Signal Yield on 2HDM II

Dependence of MC Signal Yield on 2HDM II

- τ Polarization in B \rightarrow D $\tau \nu$ Decays
 - SM LH: 70%. RH: 30%
 - 2HDM LH: 0% RH: 100%

- > Impact on fitted distributions large for $B \rightarrow D\tau v$
 - missing mass sq: $m_{miss}^2 \sim q^2$
 - p^*_{ℓ} , momentum of secondary lepton from $\tau^- \to \ell^- \overline{\nu}_{\ell} \nu_{\tau}$ decays in B rest frame

Paris, November 26-28, 2012