A strategy to compute $\bar{B} \rightarrow D^{* *} \ell \bar{\nu}$ at finite mass on the lattice

M. Atoui

Workshop Jussieu 26-28 november 2012

Introduction - Motivation

- Ultimate goal: decay rates of $\bar{B} \rightarrow D^{* *} \ell \bar{\nu}$ channels in Lattice QCD with "real life" quarks
- Current goal : calculation of transition amplitudes of the type $\left\langle D^{* *}\left(p_{D^{* *}}(, \varepsilon)\right)\right| V_{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle \quad$ and $\left\langle D^{* *}\left(p_{D^{* *}}(, \varepsilon)\right)\right| A_{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle$

Collaboration with the lattice group of the LPSC in Grenoble and the LPT in Orsay, within the European Twisted Mass Collaboration

Sommaire

(1) Generalities

Sommaire

(1) Generalities
(2) Let's go lattice

Sommaire

(1) Generalities
(2) Let's go lattice
(3) Conclusion

Sommaire

(1) Generalities

(2) Let's go lattice
(3) Conclusion

"Beasties" to be delt with

$D^{* *}$ states considered

(1) $J^{P}=O^{+}$or ${ }^{2 S+1} L_{J}={ }^{3} P_{0}$ scalar state $\left(D_{0}^{*}\right)$
(belongs to the $1 / 2^{+}$multiplet in the infinite mass limit)
(2) $J^{P}=2^{+}$or ${ }^{2 S+1} L_{J}={ }^{3} P_{2}$ tensor state $\left(D_{2}^{*}\right)$
(belongs to the $3 / 2^{+}$multiplet in the infinite mass limit)

Current structures

(1) Axial current

$$
A^{\mu}=\bar{\psi} \gamma^{5} \gamma^{\mu} \psi
$$

(2) Vector current

$$
V^{\mu}=\bar{\psi} \gamma^{\mu} \psi
$$

Form factors definition

${ }^{3} P_{0}$ state

$$
\begin{aligned}
& \left\langle{ }^{3} P_{0}\left(p_{D^{* *}}\right)\right| V_{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle=0 \\
& \left\langle^{3} P_{0}\left(p_{D^{* *}}\right)\right| A_{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle=\tilde{u}_{+}\left(p_{B}+p_{D^{* *}}\right)_{\mu}+\tilde{u}_{-}\left(p_{B}-p_{D^{* *}}\right)_{\mu}
\end{aligned}
$$

${ }^{3} P_{2}$ state

$$
\begin{aligned}
& \left\langle{ }^{3} P_{2}\left(p_{D^{* *}}, \lambda\right)\right| V_{\mu}\left|B\left(p_{B}\right)\right\rangle= \\
& i\left[\tilde{h} \epsilon_{\mu \rho \sigma \tau} \varepsilon_{\left(p_{D^{* *}}, \lambda\right)}^{\rho \alpha *} p_{B \alpha}\left(p_{B}+p_{D^{* *}}\right)^{\sigma}\left(p_{B}-p_{D^{* *}}\right)^{\tau}\right. \\
& \left\langle{ }^{3} p_{2}\left(p_{D^{* *}}, \lambda\right)\right| A_{\mu}\left|B\left(p_{B}\right)\right\rangle=\left[\tilde{k} \varepsilon_{\mu \rho}^{*\left(p_{D^{* * *}}, \lambda\right)} p_{B}^{\rho}\right. \\
& \quad+\left(\varepsilon_{\alpha \beta}^{*\left(p_{D^{* *}}, \lambda\right)} p_{B}^{\alpha} p_{B}^{\beta}\right)\left[\tilde{b}_{+}\left(p_{B}+p_{D^{* *}}\right)_{\mu}+\tilde{b}_{-}\left(p_{B}-p_{D^{* *}}\right)_{\mu}\right]
\end{aligned}
$$

$\Longrightarrow 6$ form factors: $\underbrace{\tilde{u}_{+}, \tilde{u}_{-}}_{{ }^{3} P_{0}}$ and $\underbrace{\tilde{h}, \tilde{k}, \tilde{b}_{+}, \tilde{b}_{-}}_{{ }^{3} P_{2}}$

Form factors definition

Relation to the Isgur-Wise τ_{j} functions when $m_{Q} \rightarrow \infty$

- ${ }^{3} P_{0}$ state:

$$
\tilde{u}_{+}=\frac{1-r_{D_{0}^{*}}}{\sqrt{{ }_{D_{0}^{*}}}} \tau_{1 / 2}
$$

$$
\tilde{u}_{-}=-\frac{1+r_{D_{0}^{*}}}{\sqrt{D_{D_{0}^{*}}}} \tau_{1 / 2}
$$

$$
\left(m_{D_{0}^{*}}=r_{D_{0}^{*}} m_{B}\right)
$$

- ${ }^{3} P_{2}$ state:

$$
\begin{aligned}
& \tilde{h}=\frac{\sqrt{3}}{2} \frac{1}{m_{B}^{2} \sqrt{r_{D_{2}^{*}}}} \tau_{3 / 2} \\
& \tilde{k}=\sqrt{3} \sqrt{r_{D_{2}^{*}}}(1+w) \tau_{3 / 2} \\
& \tilde{b}_{+}=-\frac{\sqrt{3}}{2} \frac{1}{m_{B}^{2} \sqrt{r_{D_{2}^{*}}}} \tau_{3 / 2} \\
& \tilde{b}_{-}=\frac{\sqrt{3}}{2} \frac{1}{m_{B}^{2} \sqrt{r_{D_{2}^{*}}}} \tau_{3 / 2} \\
& \left(m_{D_{2}^{*}}=r_{D_{2}^{*}} m_{B} \quad\right. \text { and } \\
& \left.m_{B} m_{D_{2}^{*}} w=p_{B} \cdot p_{D_{2}^{*}}\right)
\end{aligned}
$$

Generalities

in order to get the decay rates, we need the form factors

BUT

in order to get the form factors, we need the transition amplitudes

SO...

Sommaire

(1) Generalities

(2) Let's go lattice

3 Conclusion

Kinematics

(1) $D^{* *}$ rest frame $\quad p_{D^{* *}}\left(m_{D^{* *}}, \overrightarrow{0}\right) \quad$ (natural units)
\Longrightarrow simplifications: e.g. spin 2 polarization tensor $\varepsilon^{\mu \nu}(\overrightarrow{0}, \lambda)$
$\varepsilon_{(\pm 2)}^{\mu \nu}=\frac{1}{2}\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & \pm i & 0 \\ 0 & \pm i & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\varepsilon_{(\pm 1)}^{\mu \nu}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \mp 1 \\
0 & 0 & 0 & -i \\
0 & \mp 1 & -i & 0
\end{array}\right)
$$

$$
\varepsilon_{(0)}^{\mu \nu}=\frac{1}{\sqrt{6}}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

(2) \bar{B} kinematics: particular choice $p_{B}^{\mu}=\left(E_{B}, p, p, p\right)$ \Longrightarrow "simple formulæ" to extract ALL the form factors

Example: \quad with $\quad \mathscr{T}_{\mu(\lambda)}^{A} \stackrel{\text { def. }}{=}\left\langle{ }^{3} P_{2}(\lambda)\right| A_{\mu}\left|B\left(P_{B}\right)\right\rangle$

$$
\begin{array}{r}
\tilde{k}=-\frac{\sqrt{6}}{p} \mathscr{T}_{1(0)}^{A}=-\frac{\sqrt{6}}{p} \mathscr{T}_{2(0)}^{A}=\frac{\sqrt{6}}{2 p} \mathscr{T}_{3(0)}^{A}=\frac{1}{p}\left[\mathscr{T}_{1(+2)}^{A}+\mathscr{T}_{1(-2)}^{A}\right]=-\frac{1}{p}\left[\mathscr{T}_{2(+2)}^{A}+\mathscr{T}_{2(-2)}^{A}\right] \\
=\frac{1+i}{p}\left[i \mathscr{T}_{1(+1)}^{A}+\mathscr{T}_{1(-1)}^{A}\right]=-\frac{1+i}{p}\left[i \mathscr{T}_{2(+1)}^{A}+\mathscr{T}_{2(-1)}^{A}\right]
\end{array}
$$

Such relations exist for the other form factors

What is the "Lattice"

Discretization

continuum of space-time coordinates in infinite volume

lattice of space-time coordinates in a finite volume

Important numbers

a : spacing of the lattice
L : spatial length
T : time length

What is the "Lattice"

By discretizing the QCD action, it is possible to :

- describe gluons: computation of gauge configurations
(a configuration $=a$ set of all the gauge links of a lattice)
- describe fermions: choice of a proper fermionic action
- compute green functions:

$$
(\text { green function })=\left(\begin{array}{c}
\text { statistical average over } \\
\text { gauge configurations } \\
\text { (canonical ensemble average) }
\end{array}\right)
$$

- go back to the continuum : e.g. limit $a \rightarrow 0$, limit $V \rightarrow \infty$

Spectroscopy of the $D^{* *}$

Why? To calculate the mass of the ${ }^{3} P_{0}$ and the ${ }^{3} P_{2}$ states

How?

Consider a meson M which:

$\left\{\begin{array}{l}\text { is created at a point }(0, \overrightarrow{0}) \\ \text { propagates to the point }(t, \vec{x}) \\ \text { is destroyed at }(t, \vec{x})\end{array}\right.$
\Longrightarrow two-point correlation function $\mathscr{C}_{M}^{(2)}(t, \vec{p})$

Spectroscopy of the $D^{* *}$

What is $\mathscr{C}{ }^{(2)}$? vacuum expectation value of interpolating fields \mathscr{O} (meson creation operator):

$$
\mathscr{O}(t)=\bar{\psi}_{Q}\left(t, \vec{x}_{Q}\right) \mathscr{P}_{t}\left(\vec{x}_{Q}, \vec{x}_{q}\right) \Gamma \psi_{q}\left(t, \vec{x}_{q}\right)
$$

where
$\mathscr{P}_{t}\left(\vec{x}_{Q}, \vec{x}_{q}\right)$: combination of gauge links Г: Dirac matrices

Extraction of the mass m of the meson M

"long time" behaviour of the 2-point correlation function at $\vec{p}=\overrightarrow{0}$:

$$
\mathscr{C}_{M}^{(2)}(t, \overrightarrow{0}) \stackrel{\text { def. }}{=} \sum_{\text {positions }}\left\langle\mathscr{O}^{\dagger}(t) \mathscr{O}(0)\right\rangle \underset{t \gg 0}{\longrightarrow} \mathscr{Z}_{M} \exp (-m t)
$$

Spectroscopy of the $D^{* *}$: interpolating fields

${ }^{3} P_{0}$ state : local interpolating field (easy case)

$$
\mathscr{O}(t)=\bar{\psi}_{c}(t, \vec{x}) \psi_{q}(t, \vec{x})
$$

${ }^{3} P_{2}$ state : non local interpolating field
\leadsto Question: how to locate on the lattice a state with $J^{P}=2^{+}$?
\sim Answer: look at the symmetries!!

Spectroscopy of the $D^{* *}$: a touch of group theory

Fundamental idea

member of a basis of a conveniently chosen irreducible representation (IR) of the symmetry group of the system

Lattice case

- symmetry: O_{h} group
- IR's : "only" $10 \underbrace{A_{1}^{+}, A_{1}^{-}, A_{2}^{+}, A_{2}^{-}}_{\mathbb{R} \operatorname{dim} 1} \underbrace{E^{+}, E^{-}}_{\mathbb{R} \operatorname{dim} 2} \quad \underbrace{T_{1}^{+}, T_{1}^{-}, T_{2}^{+}, T_{2}^{-}}_{\mathbb{R} \operatorname{dim} 3} \quad(\pm \leadsto$ parity $)$

Main trick

$$
\text { spin } J \text { contributes to }\left|\psi_{R}\right\rangle \Longleftrightarrow\left|\psi_{R}\right\rangle \in D^{(J)} \downarrow O_{h}
$$

Spectroscopy of the $D^{* *}$: a touch of group theory

Correspondance table

\boldsymbol{J}	$\boldsymbol{D}^{(\boldsymbol{J})} \downarrow \boldsymbol{O}_{\boldsymbol{h}}$
0	$A_{1}^{ \pm}$
1	$T_{1}^{ \pm}$
2	$E^{ \pm} \oplus T_{2}^{ \pm}$
etc	etc

$\Rightarrow 2^{+}$state : work with E^{+}and T_{2}^{+}

Solution for " $\mathscr{P}_{t}\left(\vec{x}_{Q}, \vec{x}_{q}\right) \Gamma$ "

possible combination of link variables and dirac matrices that transform according to the IR E^{+} and T_{2}^{+}:

$$
E^{+}\left\{\begin{array} { l c }
{ \gamma _ { 1 } D _ { 1 } + \gamma _ { 2 } D _ { 2 } - 2 \gamma _ { 3 } D _ { 3 } \quad (0) } \\
{ \gamma _ { 1 } D _ { 1 } - \gamma _ { 2 } D _ { 2 } } & { (+ 2) + (- 2) }
\end{array} \quad T _ { 2 } ^ { + } \left\{\begin{array}{lll}
\gamma_{2} D_{3}+\gamma_{3} D_{2} & (+1)+(-1) \\
\gamma_{1} D_{3}+\gamma_{3} D_{1} & (+1)-(-1) \\
\gamma_{1} D_{2}+\gamma_{2} D_{1} & (+2)-(-2)
\end{array}\right.\right.
$$

D : covariant derivative on the lattice

Transition amplitudes

How?

Object used:

three-point correlation function $\mathscr{C}^{(3)}\left(t, t_{i}, t_{f} ; \vec{p}_{i}, \vec{p}_{f}\right)$

$\mathscr{C}^{(3)}$ Definition

$\mathscr{C}_{B J_{\mu} D^{* *}}^{(3)}\left(t, t_{i}, t_{f} ; \vec{p}_{i}, \vec{p}_{f}\right)=$

$$
\sum_{\vec{x}_{i}, \overrightarrow{,}, \vec{x}_{f}}\left\langle\mathscr{O}_{D^{* *}}^{\dagger}\left(t_{f}, \vec{x}_{f}\right) J_{\mu}(t, \vec{x}) \mathscr{O}_{B}\left(t_{i}, \vec{x}_{i}\right)\right\rangle \cdot e^{i\left(\vec{x}-\vec{x}_{f}\right) \cdot \vec{\rightharpoonup}_{f}} \cdot e^{-i\left(\vec{x}-\vec{x}_{i}\right) \cdot \overrightarrow{p_{i}}}
$$

Transition amplitudes

Transition amplitudes

ratio $\quad R(t) \stackrel{\text { def. }}{=} \frac{\mathscr{C}_{B J D^{* *}}^{(3)}\left(t, t_{i}, t_{f} ; \vec{p}_{i}, \vec{p}_{f}\right)}{\mathscr{C}_{B}^{(2)}\left(t, t_{i} ; \vec{p}_{i}\right) \mathscr{C}_{D^{* *}}^{(2)}\left(t, t_{f} ; \vec{p}_{f}\right)} \sqrt{\mathscr{Z}_{B}} \sqrt{\mathscr{Z}_{D^{* *}}}$

$$
\xrightarrow[t_{f} \gg t \gg t_{i}]{ } \quad\left\langle D^{* *}\left(\vec{p}_{f}\right)\right| J_{\mu}\left|\bar{B}\left(\vec{p}_{i}\right)\right\rangle
$$

(remember that \mathscr{Z}_{X} comes from $\mathscr{C}_{X}^{(2)}$)

Technicalities

A few examples of issues we are faced with...
(1) B meson: too big to fit inside the lattice \Rightarrow different m_{b} and extrapolation to physical mass
(2) Twisted mass fermions: possible mix of 0^{+}and 0^{-}states \Rightarrow disentanglement required (GEVP methoor)
(3) Renormalization: renormalization constants for the axial and vector current
(9) Behaviour at small \vec{p} : many quantities $\rightarrow 0$ when $\vec{p}=\overrightarrow{0}$ \Rightarrow go to higher impulsions but increase in noise !!

Sommaire

(1) Generalities

(2) Let's go lattice
(3) Conclusion

Conclusions

- Theoretical viewpoint: everything can be calculated:
- general expressions for $B \rightarrow D^{* *}$ transition amplitudes on the lattice
- formula giving each form factor in terms of those transition amplitudes
- decay rates
- Computational viewpoint: very delicate computations
- isolation of excited states
- possible increase in noise when going to high \vec{p}
- high statistics requirement

