Prospects for B→D** @ Belle II

Introduction

- Many puzzles surround $B \rightarrow D^{**}$, from understanding HQET to controlling background in V_{qb} and NP searches.
- SuperKEKB: 40X Luminosity of KEKB and Belle II detector upgrade will shed more light on these mechanisms
 - Semileptonic, Hadronic, $Y(5S) \rightarrow B_s$
- Focus on where High Luminosity e⁺e⁻ outperforms LHC high rate.
 - Excellent neutral mode sensitivity.
 - Low backgrounds, low trigger bias, B-tagging(coherent), many control samples.
 - Good kinematic resolution,
 - **Dalitz** plots analyses straightforward.
 - Absolute branching fractions can be measured.
 - Missing momentum analyses are straightforward.

Phillip URQUIJO

2

$B_{(s)} \rightarrow D_{(s)}^{**}$ @ Belle II

- Checklist:
 - Neutral modes.
 - Higher **multiplicity** modes.
 - **Differentials** in q², helicity.
 - $D^{(*,**)}$ **T v** modes.
 - Search for radial excitation modes.
 - Large Y(5S) sample (possible).
- Better understanding of $D^{**} \rightarrow f$ decay modes.

D	Observed	Possible(Not seen)
$\mathbf{D_0}^*$	D π	Dη
$\mathbf{D_1}^*$	D *π, D ππ	Dη
D ₁	D *π, D ππ	
$\mathbf{D_2}^*$	D ^(*) π	Dη, D ^(*) ππ
D′		D (ρ)($\pi\pi$), D [*] (η)(π)
D' *		$D^{*}(ρ)(ππ), D(η)(π)$
	Phillip URQ	QUIJO 3 universitä

Luminosity Prospects SuperKEKB

Norksho

Belle II Detector Upgrade

Challenges:

- Higher background (×10-20) from Touschek, higher event rate (×10)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Targeted improvements:
 - Increased hermeticity (v recon.)
 - Increased Ks efficiency
 - Improved IP and secondary vertex resolution
 - Improved π/K separation
 - improved π^0 efficiency
 - add PID in endcaps
 - preserve µID at high rates

The Detector: (Belle→Belle II)

- hermeticity: detectors closer to beam-pipe
- There should be **improvements** in **all experimental systematic errors**.

 $B \rightarrow D^{**}$ at Belle II

Phillip URQUIJO

7

Slow pion tracking

- Belle used combined SVD(Si)+CDC(Wire) for track finding, low efficiency at low p_T.
- Belle II will have standalone silicon track finding (4+2 layers). Slow π tracking enhanced considerably.
 - Fast "cellular automaton" method.

IP and Vertexing improvements

• New Vertexing layout: **PIXEL**+STRIPS resolution: 20µm to 10µm (large p).

 Also significant improvements to tracking/vertexing software. (May be used in some updated Belle I measurements in the near future!)

Particle Identification

- Barrel: Time of propagation:
 - Cherenkov ring imaging with precise time measurement.
 - Internal reflection of Cerenkov ring images from quartz (like BaBar DIRC)

Tuesday, 27 November 12

Phillip URQUIJO 10

universitätbon

(su) 401

Calorimeter

- ECL Improved to handle higher rates.
 - Barrel electronics with waveform sampling.
 - Csl coverage extended to endcap (Pure Csl): hermeticity.
- Resolution similar to Belle I (which is very good)

 $B \rightarrow D^{**}$ at Belle II

The Analysis Tool of Belle II's future: B tagging

Use a "Tagged B" to define 4-momenta of "Signal B":
 – Tagged B Hadronic decays : Signal B momenta well-defined.

- The number of reconstructed B_{tag} decay modes can be >1000 (Babar ultimately used ~1900).
- Look for excess neutral energy (" $E_{extra/ECL}$ ") and excess tracks not assigned to tagged or signal B.

 $B \rightarrow D^{**}$ at Belle II

Phillip URQUIJO 12

Uncertainties with 1st Gen. B factories

1. Measurements of specific D** modes in hadronic B decays already **done reasonably well.**

2. So far no attempts at neutral modes in hadronic B decays, or any absolute D^{**} measurements.

3. Most current semileptonic decay uncertainties will scale down with Luminosity.

 $B \rightarrow D^{**}$ at Belle II

	B ⁰ →D ⁰ π ⁺ π ⁻ (Belle) 2006 357 fb ⁻¹	B ⁰ →D ⁺ π ⁺ π ⁻ (Babar) 2009 383 fb ⁻¹	B→D ^{**} l v (Belle) 2008 657fb ⁻¹
PID	0.05	0.015	0.01
Backgrounds	0.05	0.015	0.1-0.25
Signal PDFs		0.01	
Tracking/Photon	0.05	0.025	0.02
BF(Charm)	0.024	0.023	0.01
Modelling			0.07
Normalisation		0.016	0.10
Total Systematic	0.09	0.04	0.16-0.28
Stat	~0.05-0.2	~0.05	0.2

Very rough summary of selected measurements

In all cases, non-saturation of D^{**} decay modes.

$B \rightarrow D^{**} | v: outlook$

- Reconstruction, analysis software for Belle II still in preparation.
- Outlook based on
 - Existing Belle (or Babar) measurements: extrapolated based on (privately) estimated performance improvements and integrated luminosity (Only measured $D^{**} \rightarrow D^{(*)}\pi$ modes extrapolated.)
 - Unmeasured: order of magnitude estimates (efficiencies difficult to estimate).

Belle I: PRD.77.091503

- **Near future: Belle I: update**: B_{tag} efficiency improved, *results pending*.
- **Extrapolation** of existing measurements:
 - **Belle II**: guesstimated 1.5x stat. power from efficiency and background rejection improved over **Belle I** (ultimately mode dependent).
 - **BaBar**: Simple luminosity scaling, for reference (PRL.101.261802)

Phillip URQUIJO 14

$B \rightarrow D^{**} | v$: Neutral modes outlook

● e.g. D**→Dη

Relatively slow η (low efficiency, large photon background), not on threshold.
 Other: D^{**}→Dρ(ππ,ππ⁰), D^{**}→D(ππ,ππ⁰)

Crude estimate	D⁰η	D+η	ηlv
BF(B→D ^{**} narrow) approximation	1.00%	1.00%	0.004%
BF(D ⁰ →Kπ,K3π) ,BF(D ⁺ →Kππ)	12%	9%	-
BF(D ^{**} →ηD) (assume)	20%	20%	-
BF(η \rightarrow γγ,πππ ⁰)	62%	62%	62%
Efficiency(estimate)	3%	2%	20%
B _{tag} eff.	0.5%	0.3%	0.5%
700 fb ⁻¹	15	5	32
50 ab ⁻¹	1046	353	2294

 $B \rightarrow D^{**}$ at Belle II

$B \rightarrow D^{**} \mid v \text{ Decay Differentials}$

Still have limited experimental information on the decay differentials.

Several models in PRD 57 308 (1998) "LLSW". Are these reliable? Belle II will precisely test them.

Yield

10

10³

₩Belle (proj. ne

Belle

Belle II (proj

•

10⁴

$B \rightarrow D' \mid v$: Radially excited modes outlook

• $D_1'^{(*)} \rightarrow D^{(*)} \pi \pi$ or

 $\rightarrow D_{broad}^{**}\pi$

• 2π + emission not examined/seen in SL decays (Belle I still to prepare a final result).

• Expect LHCb could (clearly) confirm&characterise $2\pi^{\pm}$ modes in SL decays but the full width must be studied at Belle II. Observation of D1(2420) \rightarrow D $\pi^{+}\pi^{-}$

• c.f. Belle $D_1 \rightarrow D\pi\pi$ (150 fb⁻¹) (confirmed by LHCb: PRD 84.092001)

Belle: Phys.Rev.Lett.94:221805,2005

 $B \rightarrow D^{**}$ at Belle II

Phillip URQUIJO

18

universitätbo

$B \rightarrow D^{**} \tau \nu$?

- To reach high precision (at Belle II) in $B \rightarrow D^{(*)} \tau \nu$, D** modes may need to be considered.
- Theory expectation?
- Output (Clearly) No measurements exist:
 - $BF(D^{**}\tau\nu)/BF(D^{**}\nu) \sim 0.3 \text{ x phase space}, BF(\tau \rightarrow \nu\nu) \sim 0.35$
 - Eff~0.3 (low momentum)
 - Below assume ~1% statistical power of B→D^{**}I
 ν (background conditions difficult to estimate)

Tuesday, 27 November 12

Hadronic B decay modes: Outlook

- Belle II strengths are neutral mode measurements.
 - Bkg suppression improved due to dedicated low pt track finding&hermeticity.
 - γ resolution similar to Belle I.
 - Neutral modes will have high background (but new high purity methods could be employed)

D** mode	D⁰η	D⁺ŋ	D ⁰ π	D +π			
$BF(B \rightarrow D^{**})$ approx.	0.02%	0.02%	0.02%	0.02%			
BF(D ⁰ →K π) +BF(D ⁺ →K π π)	12%	9%	12%	9%			
BF(η \rightarrow ΥΥ,πππ ⁰)	62%	62%	-	-			
Efficiency(estimate)	6%	4%	30%	21%			
700 fb ⁻¹ Untagged	1250	656	10080	5292			
50 ab ⁻¹ Untagged	89280	46872	720000	378000			
B _{tag} eff.	0.5%	0.5%	0.5%	0.5%			
700 fb ⁻¹ B-tag	6	3	50	26			
50 ab ⁻¹ B-tag	446	234	3600	1890			
No data available to Just for estimate uncertainty reference							
I Phillip UROUIIO 20 universitätbonn							

$Y(5S) \rightarrow B_s \rightarrow D_s^{**}$

Modes	Width	<i>Dominant</i> X _c mode
Ds	-	ΚΚπ
$\mathbf{D_s}^*$	-	$D_s \gamma$
D _{s0} [*] (2317)	-	D _s π ⁰
D _{s1} (2460)	-	$\mathbf{D_s}^* \pi^{0}$
D _{s1} ′(2536)	1 MeV	$\mathbf{D}^* \mathbf{K}$
D _{s2} *(2573)	17 MeV	D ⁰ K

- Most have ≥ 2 neutrals ($\pi^0 \& v$), best at e⁺e⁻!
- $\sigma_{bb}^{(\sqrt{s}=10.87 \text{GeV})} / \sigma_{bb}^{(\sqrt{s}=10.58 \text{GeV})} \sim 0.3$
- *f_s*~0.199±0.030 ~14M B_s⁰ in 121 fb⁻¹
- Excited production: kinematic smearing
 BF(Y(5S) → B_s*B_s*)~90%
 - $B_s^* \rightarrow B_s \gamma$, m(B_s^*)-m(B_s) $\simeq 49$ MeV

$B_s^0 \to D_s^{*\pm} / v @ 121 \text{ fb}^{-1}, \text{MC}$

Untagged approach shown: X_{miss}

■ B_{ud} cross feed from~6 • 10⁻⁴_{BF(B→Ds(*)±KIv)}×4(fud/fs) (precision measurement at Belle II)

• Resolution: Kinematic smearing due to Y(5S) decay, and γ in $D_s^* \rightarrow D_s \gamma$

• $B_s^0 \rightarrow D_s^{*\pm} I v, D_s^* \rightarrow D_s \gamma, D_s \rightarrow \Phi(KK)\pi (p_{lep}>0.5 \text{ GeV})$

Yield projections

• (My) Rough estimates for Signal: $B_s \rightarrow D_s(\Phi \pi) I \vee X$

- **D**_s tagging could be extended , e.g. (**Φ**π,*K*_s*K*,*K*^{*}*K*) (~*x*3 eff. *w*/*r*/*t* Belle result)
- Lepton tag is a clean high statistics approach
- **B**_s **Full Recon**: take Eff(B⁰) as a guide
- Too early to quote precise, expected precision on exclusive modes.

			Yields (tagging x efficiency x BF)										
Tag Method	Tag Eff.	N_{Bs}/N_B	121 f	121 fb ⁻¹ (5 ab ⁻¹)									
			$Xh = \Delta stat \Delta sys D_sh = D_s^*h = D_{s0}^*h = D_{s2}^*h$						Īv				
Un tagged	2	$f_s/f_{d,u} \simeq 0.25$	2.7M	-	-	720	0	109	00	800		130	0
Lepton tag	0.1	$f_s/f_{d,u} \simeq 0.25$	135k	-	-	370	(15,000)	534	(22,000)	40	(1,600)	(70)	(2,800)
D s :Φ π, <i>K</i> SK,K [*] K	0.04	$10 \cdot f_s/f_{d,u}$	27k	3%	7%	140	(6,000)	200	(8,500)	16	(650)	(26)	(1,000)
B _s Full Recon.	0.004	≫10	5400	2%	~4%	15	(620)	20	(880)	2	(70)	(3)	(110)
(My) Expected error @ 5 ab ⁻¹ ~ 10%													

 $B \rightarrow D^{**}$ at Belle II

Conclusions

● B-factories have proven to provide useful input to $B \rightarrow D^{**}$ physics, but there are persistent puzzles needing (much) more e^+e^- data.

• Major upgrade at KEK during 2010-15 to increase L x 40.

- Belle II is essentially a new project: many components and most electronics will be replaced.
- Slow pion tracking, and PID will be enhanced greatly.
- Neutral decay modes and broad resonances (crucial to understand full decay width) will be studied precisely, best done at e⁺e⁻.

 Have not yet finished analysing Belle I data! Expect new results in semileptonic and hadronic modes.

 $B \rightarrow D^{**}$ at Belle II

Backup

 $B_s \rightarrow D_s^{**} lv$ Shapes

Recent calculations in:

Semileptonic *B* and *B_s* decays into orbitally excited charmed mesons, <u>J.</u>
 <u>Segovia</u>,et al.,Physical Review D 84, 094029 (2011), arXiv: 1107.4248

A lot like ISGW2 (black)

universitätbo

26

Belle Inclusive

Two component fraction fit: **prompt leptons** and **secondary and fake** leptons

Rel. Systematic Uncertainty	e⁻	μ.
Lepton ID, fake rate	0.7	1.4
D _s efficiency	0.8	0.8
KKπ fit	2.0	2.2
Secondary leptons	1.0	1.5
Continuum	1	.1
Semileptonic Width Composition	1	.2
Phillip URQUIJO	27	universität

Inclusive Summary

- Belle: Model independent
- ~10% limit on SU3 symmetry breaking
- Systematics limited!

 $=\frac{\mathcal{B}(B^0_s \to X\ell\nu)}{\mathcal{B}(B^0_d \to X\ell\nu)}$

Phillip URQUIJO

- Due to tagging techniques.
- **B**_s **full reconstruction** (particularly >1 ab⁻¹) will help, but there is still some kinematic smearing

28

universitätbo

Can still improve *f_s & D_sX* with current 5S data. (not yet measured for 121 fb⁻¹)

ad physics program

	100 177 110 0	
n arm	mixing	
	\sim	

Mode	Observable	$\Upsilon(4S)$	$\psi(3770)$
		(75 ab^{-1})	(300 fb^{-1})
$D^0 \rightarrow K^+ \pi^-$	x'^2	3×10^{-5}	
	y'	$7 imes 10^{-4}$	
$D^0 \rightarrow K^+ K^-$	y_{CP}	5×10^{-4}	
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x	4.9×10^{-4}	
	y	$3.5 imes 10^{-4}$	
	q/p	3×10^{-2}	
	ϕ	2°	
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$
	y		$(1-2) \times 10^{-3}$
	$\cos \delta$		(0.01 - 0.02)

B _s Physics @ Y	(5S)	
Observable	Error with 1 ab^{-1}	Error with 30 ab^{-1}
ΔΓ	$0.16 \ {\rm ps^{-1}}$	$0.03 \mathrm{\ ps^{-1}}$
Γ	$0.07 \ {\rm ps^{-1}}$	$0.01 \ {\rm ps}^{-1}$
β_s from angular analysis	20°	8°
$A^s_{ m SL}$	0.006	0.004
$A_{ m CH}$	0.004	0.004
${\cal B}(B_s o \mu^+ \mu^-)$	-	$< 8 imes 10^{-9}$
$\left V_{td}/V_{ts} ight $	0.08	0.017
$\mathcal{B}(B_s o \gamma \gamma)$	38%	7%
eta_s from $J/\psi\phi$	10°	3°
β_s from $B_s \to K^0 \bar{K}^0$	24°	11°

29

R Physics @ V	V(4S)				
D I Hysics (u)			Observable	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})
Observable	B Factories (2 ab^{-1})	$\operatorname{Super}B(75 \ \operatorname{ab}^{-1})$	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$\sin(2eta) \; ig(J/\psi K^0ig)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)
$\cos(2eta)\left(J/\psiK^{st 0} ight)$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)
$\sin(2eta)~(Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$\cos(2eta)~(Dh^0)$	0.20	0.04		• •	
$Sig(J/\psi^{}\pi^{0}ig)$	0.10	0.02	$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \mu \nu)$	visible	5%
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B \to D_{TV})$	10%	2%
$S(\eta'K^0)$	0.05	0.01 (*)		1070	270
$S(K^0_sK^0_sK^0_s)$	0.15	0.02 (*)	$\mathcal{B}(\mathcal{D})$	1 ⊏07	207 (4)
$S(K^0_S\pi^0)$	0.15	$0.02 \; (*)$	$\mathcal{B}(B \to \rho \gamma)$	10%	3% (T)
$S(\omega K_s^0)$	0.17	$0.03\;(*)$	$B(B \rightarrow \omega \gamma)$	30%	5%
$S(f_0K_s^0)$	0.12	0.02 (*)	$A_{CP}(B o K^* \gamma)$	0.007 (†)	0.004 († *)
			$A_{CP}(B o ho\gamma)$	~ 0.20	0.05
$\gamma \ (B ightarrow DK, D ightarrow CP \ { m eigenstates})$	$\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	$0.012(\dagger)$	0.004 (†)
$\gamma \ (B \to DK, D \to \text{suppressed stat})$	es) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	$0.006~(\dagger)$
$\gamma \; ig(B o DK, D o ext{multibody state} \$	es) $\sim 9^{\circ}$	1.5°	$S(K^0_S\pi^0\gamma)$	0.15	0.02 (*)
$\gamma \ (B \to DK, ext{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$lpha \; (B o \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^* \ell \ell)$	7%	1%
$lpha \; (B o ho ho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$lpha \; (B o ho \pi)$	$\sim 12^{\rm o}$	2°	$A^{FB}(B \to X \ \ell \ell)s_0$	35%	5%
$\alpha \ (\text{combined})$	$\sim 6^{\circ}$	1-2° (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, D^{\pm}K_{s}^{0}\pi^{\mp})$	20°	5°	${\cal B}(B o \pi u ar u)$	-	possible

Tuesday, 27 November 12

Workshop

 $B \rightarrow D^{**}$ at Belle II