Prospects for

 B \rightarrow D** * @ Belle II

 B \rightarrow D** * @ Belle II}

Introduction

- Many puzzles surround $B \rightarrow D^{* *}$, from understanding HQET to controlling background in V_{qb} and NP searches.
- SuperKEKB: 40X Luminosity of KEKB and Belle II detector upgrade will shed more light on these mechanisms
- Semileptonic, Hadronic, $\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{B}_{\mathrm{s}}$
- Focus on where High Luminosity $\mathrm{e}^{+} \mathrm{e}^{-}$outperforms LHC high rate.
- Excellent neutral mode sensitivity.
- Low backgrounds, low trigger bias, B-tagging(coherent), many control samples.
- Good kinematic resolution,
- Dalitz plots analyses straightforward.
- Absolute branching fractions can be measured.
- Missing momentum analyses are straightforward.

$\mathrm{B}_{(\mathrm{s})} \rightarrow \mathrm{D}_{(\mathrm{s})}{ }^{* * *} @$ Belle II

- Checklist:
- Neutral modes.
- Higher multiplicity modes.
- Differentials in q^{2}, helicity.
- $\mathrm{D}^{(*, * *)} \mathbf{T} V$ modes.
- Search for radial excitation modes.
- Large $\Upsilon(5 S)$ sample (possible).
- Better understanding of
$\mathrm{D}^{* *} \rightarrow f$ decay modes.

D	Observed	Poss
$\mathbf{D}_{0}{ }^{*}$	$\mathrm{D} \pi$	$\mathrm{D} \eta$
$\mathbf{D}_{1}{ }^{*}$	$\mathrm{D}^{*} \pi, \mathrm{D} \pi \pi$	$\mathrm{D} \eta$

$\mathbf{D}_{1} \quad \mathbf{D}^{*} \pi, \mathrm{D} \pi \pi$

$\mathbf{D}_{2}{ }^{*}$	$\mathbf{D}^{(*)} \pi$
\mathbf{D}^{\prime}	$\mathbf{D \eta}, \mathbf{D}^{(*)} \pi \pi$
$\mathbf{D}^{\prime *}$	$\mathbf{D}(\rho)(\pi \pi), \mathbf{D}^{*}(\eta)(\pi)$
	$\mathbf{D}^{*}(\rho)(\pi \pi), \mathbf{D}(\eta)(\pi)$

Phillip URQUIJO 3

KEKB to SuperKEKB

Replace short dipoles with longer ones (LER)

Add / modify RF systems for higher beam current

Low emittance positrons to inject
Redesign the lattices of HER \& LER Damping ring to squeeze the emittance

TiN -coated beam pipe with antechambers

Positron source
New positron target / capture section

Low emittance gun
Low emittance electrons to inject

New superconducting / permanent final focusing quads near the IP

To obtain $\mathbf{x 4 0}$ higher luminosity

Tuesday, 27 November 12

Luminosity Prospects SuperKEKB

$B \rightarrow D^{* *}$ at Belle II
Phillip URQUIJO
5

Belle II Detector Upgrade

- Challenges:
- Higher background ($\times 10-20$) from Touschek, higher event rate ($\times 10$)
- radiation damage and occupancy
- fake hits and pile-up noise in the EM
- Targeted improvements:
- Increased hermeticity (v recon.)
- Increased Ks efficiency
- Improved IP and secondary vertex resolution
- Improved π / K separation
- improved π^{0} efficiency
- add PID in endcaps
- preserve μ ID at high rates

The Detector: (Belle \rightarrow Belle II)

- hermeticity: detectors closer to beam-pipe
- There should be improvements in all experimental systematic errors.

Slow pion tracking

- Belle used combined SVD(Si)+CDC(Wire) for track finding, low efficiency at low p_{T}.
- Belle II will have standalone silicon track finding (4+2 layers). Slow π tracking enhanced considerably.
- Fast "cellular automaton" method.

$B \rightarrow D^{* *}$ at Belle II

IP and Vertexing improvements

- New Vertexing layout: PIXEL+STRIPS resolution: $20 \mu \mathrm{~m}$ to $10 \mu \mathrm{~m}$ (large p).
- Also significant improvements to tracking/vertexing software. (May be used in some updated Belle I measurements in the near future!)
- Better B-tagging and charm vertex isolation.

Significant improvement in $\delta \mathbf{S}\left(\mathbf{K}_{\mathbf{S}} \pi^{0} \boldsymbol{y}^{2)^{2}}\right.$

B decay point reconstruction with K_{S} trajectory

Larger radial coverage of SVD

$10^{-1} 10$		10	$\left.L a b^{-1}\right)$

Particle Identification

- Barrel: Time of propagation:
- Cherenkov ring imaging with precise time measurement.
- Internal reflection of Cerenkov ring images from quartz (like BaBar DIRC)

multi-channel phototube

	$\pi \pi$ eff.	fake
TOP	98.1%	2.9
Belle	88.5	11.6

$$
\begin{aligned}
& \Rightarrow \text { substantial improvement over } \\
& \text { Belle. This will help for, e.g., } \\
& \text { separating } D_{\mathrm{s}}^{+} \rightarrow K^{-} K^{+} \pi^{+} \text {from } D \\
& +\rightarrow K^{-} \pi^{+} \pi^{+}, \text {removing } D^{0} \rightarrow K^{-} \pi^{+} \\
& \pi^{0} \text { from } D^{0} \rightarrow K^{-} K^{+} \text {, etc. }
\end{aligned}
$$

- Endcap: Aerogel ring imaging Cherenkov. novel "focusing" two layer radiator

Calorimeter

- ECL Improved to handle higher rates.
- Barrel electronics with waveform sampling.
- Csl coverage extended to endcap (Pure CsI): hermeticity.
- Resolution similar to Belle I (which is very good)
$B \rightarrow D^{* *}$ at Belle II

The Analysis Tool of Belle II's future: B tagging

- Use a "Tagged B" to define 4-momenta of "Signal B":
- Tagged B Hadronic decays : Signal B momenta well-defined.

- The number of reconstructed $\mathrm{B}_{\text {tag }}$ decay modes can be >1000 (Babar ultimately used ~1900).
- Look for excess neutral energy (" $\mathrm{E}_{\text {extra/ECL }}$ ") and excess tracks not assigned to tagged or signal B.
$B \rightarrow D^{* *}$ at Belle II

Uncertainties with 1 st Gen. B factories

1. Measurements of specific $D^{* *}$ modes in hadronic B decays already done reasonably well.
2. So far no attempts at neutral modes in hadronic B decays, or any absolute $\mathrm{D}^{* *}$ measurements.
3. Most current semileptonic decay uncertainties will scale down with Luminosity.

Very rough summary of selected measurements

	$\begin{aligned} & \mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \pi^{+} \pi^{-} \\ & \text {(Belle) } 2006 \\ & 357 \mathrm{fb} b^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{B}^{0} \rightarrow \mathrm{D}^{+} \pi^{+} \pi^{-} \\ & (\text {Babar) } \\ & 2009383 \\ & \mathrm{fb}^{-1} \end{aligned}$	$\begin{aligned} & B \rightarrow D^{* *} I v \\ & (B e l l e) \\ & 2008 \\ & 657 \mathrm{fb}^{-1} \end{aligned}$
PID	0.05	0.015	0.01
Backgrounds	0.05	0.015	0.1-0.25
Signal PDFs		0.01	
Tracking/Photon	0.05	0.025	0.02
BF(Charm)	0.024	0.023	0.01
Modelling			0.07
Normalisation		0.016	0.10
Total Systematic	0.09	0.04	0.16-0.28
Stat	~0.05-0.2	~0.05	0.2

In all cases, non-saturation of $D^{* *}$ decay modes.

$B \rightarrow D^{* *}$ at Belle II

$B \rightarrow D^{* *} \mid v$: outlook

- Reconstruction, analysis software for Belle II still in preparation.
- Outlook based on
- Existing Belle (or Babar) measurements: extrapolated based on (privately) estimated performance improvements and integrated luminosity (Only measured $\mathrm{D}^{* *} \rightarrow \mathrm{D}^{(*)} \boldsymbol{\pi}$ modes extrapolated.)
- Unmeasured: order of magnitude estimates (efficiencies difficult to estimate).

Belle I: PRD.77.091503

- Near future: Belle I: update: $\mathrm{B}_{\mathrm{tag}}$ efficiency improved, results pending.
- Extrapolation of existing measurements:
- Belle II: guesstimated 1.5 x stat. power from efficiency and background rejection improved over Belle I (ultimately mode dependent).
- BaBar: Simple luminosity scaling, for reference (PRL.101.261802)

$B \rightarrow D^{* *} \mid$ v: outlook

$B \rightarrow D^{* *}$ at Belle II

$\mathrm{B} \rightarrow \mathrm{D}^{* *} \mid \mathrm{v}$: Neutral modes outlook

\bullet e.g. $\mathrm{D}^{* *} \rightarrow \mathrm{D} \mathrm{\eta}$

- Relatively slow $\boldsymbol{\eta}$ (low efficiency, large photon background), not on threshold. - Other: $\mathrm{D}^{* *} \rightarrow \mathrm{D} \rho\left(\pi \pi, \pi \pi^{0}\right), \mathrm{D}^{* *} \rightarrow \mathrm{D}\left(\pi \pi, \pi \pi^{0}\right)$

Crude estimate....	$\mathrm{D}^{0} \eta$	$\mathrm{D}+\boldsymbol{\eta}$	\lv
$\mathrm{BF}\left(\mathrm{B} \rightarrow \mathbf{D}^{* *}{ }_{\text {narrow }}\right)$ approximation	1.00\%	1.00\%	0.004\%
$\begin{aligned} & \mathrm{BF}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi, \mathrm{~K} 3 \pi\right) \\ & \mathrm{BF}\left(\mathrm{D}^{+} \rightarrow \mathrm{K} \pi \pi\right) \end{aligned}$	12\%	9\%	-
$B F\left(D^{* *} \rightarrow \eta D\right)$ (assume)	20\%	20\%	-
$\mathbf{B F}\left(\boldsymbol{\eta} \rightarrow \mathbf{Y} \mathbf{Y}\right.$, $\left.\pi \pi \pi \pi^{0}\right)$	62\%	62\%	62\%
Efficiency(estimate)	3\%	2\%	20\%
$\mathrm{B}_{\text {tag }}$ eff.	0.5\%	0.3\%	0.5\%
$700 \mathrm{fb}^{-1}$	15	5	32
$50 \mathrm{ab}^{-1}$	1046	353	2294

$B \rightarrow D^{* *}$ at Belle II
Phillip URQUIJO 16
universitätbonn

$B \rightarrow D^{* *} I v$ Decay Differentials

- Still have limited experimental information on the decay differentials.

Several models in PRD 57308 (1998) "LLSW". Are these reliable? Belle II will precisely test them.

Int. Lumi. (fb ${ }^{-1}$)

$\mathrm{B} \rightarrow \mathrm{D}^{\prime} \mid \mathrm{v}$: Radially excited modes outlook

$-\mathrm{D}_{1}{ }^{\prime *} \rightarrow \mathrm{D}^{(*)} \pi \pi$ or

$$
\rightarrow \mathrm{D}_{\text {broad }}{ }^{* *} \pi
$$

- $2 \pi+$ emission not examined/seen in SL decays (Belle I still to prepare a final result).
- Expect LHCb could (clearly) confirm\&characterise $2 \pi^{ \pm}$modes in SL decays, but the full width must be studied at Belle II.
- c.f. Belle $\mathrm{D}_{1} \rightarrow \mathrm{D} \pi \pi\left(150 \mathrm{fb}^{-1}\right)$ (confirmed by LHCb: PRD 84.092001) Belle: Phys.Rev.Lett.94:221805,2005

$B \rightarrow D^{* *}$ at Belle II

$\mathrm{B} \rightarrow \mathrm{D}^{* *} \mathrm{~T} \vee$?

- To reach high precision (at Belle II) in $B \rightarrow D^{* *} T v, D^{* *}$ modes may need to be considered.
- Theory expectation?
- (Clearly) No measurements exist:
- $B F\left(D^{* *} T V\right) / B F\left(D^{* *} \operatorname{lv}\right) \sim 0.3 \times$ phase space, $\mathrm{BF}(\mathrm{T} \rightarrow \mathrm{VV}) \sim 0.35$
- Eff~0.3 (low momentum)
- Below assume $\sim 1 \%$ statistical power of $B \rightarrow D^{* *} \mid$ v (background conditions difficult to estimate)

$B \rightarrow D^{* *}$ at Belle II

Phillip URQUIJO
19

Hadronic B decay modes: Outlook

- Belle II strengths are neutral mode measurements.
- Bkg suppression improved due to dedicated low $\mathbf{p}_{\mathbf{t}}$ track finding\&hermeticity.
- γ resolution similar to Belle I.
- Neutral modes will have high background (but new high purity methods could be employed)

D** mode	$\mathrm{D}^{0} \boldsymbol{\eta}$	D $\dagger \boldsymbol{\eta}$	$\mathrm{D}^{0} \pi$	$\mathrm{D}^{+} \pi$
BF($B \rightarrow \mathrm{D}^{* *}$) approx.	0.02\%	0.02\%	0.02\%	0.02\%
$\begin{aligned} & \mathrm{BF}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi\right) \\ & +\mathrm{BF}\left(\mathrm{D}^{+} \rightarrow \mathrm{K} \pi \pi\right) \end{aligned}$	12\%	9\%	12\%	9\%
BF($\mathrm{n} \rightarrow \mathrm{Y} \mathrm{Y}, \pi \pi \pi \pi^{0}$)	62\%	62\%	-	-
Efficiency(estimate)	6\%	4\%	30\%	21\%
$700 \mathrm{fb}^{-1}$ Untagged	1250	656	10080	5292
$50 \mathrm{ab}{ }^{-1}$ Untagged	89280	46872	720000	378000
$\mathrm{B}_{\text {tag }}$ eff.	0.5\%	0.5\%	0.5\%	0.5\%
$700 \mathrm{fb}^{-1} \mathrm{~B}$-tag	6	3	50	26
$50 \mathrm{ab}^{-1}$ B-tag	446	234	3600	1890
$\begin{aligned} & \text { No data available to } \\ & \text { estimate uncertainty }\end{aligned}$$\quad \begin{aligned} & \text { Just for } \\ & \text { reference }\end{aligned}$				

$\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{* *}$

Modes	Width	Dominant X_{c} mode
$\mathrm{D}_{\text {s }}$	-	KК $\boldsymbol{\pi}$
$\mathrm{D}_{\mathrm{s}}{ }^{\text {a }}$	-	$\mathrm{D}_{\text {s }} \boldsymbol{\gamma}$
$\mathrm{D}_{\mathrm{s} 0}{ }^{*}(2317)$	-	$\mathrm{D}_{\mathrm{s}} \pi^{0}$
$\mathrm{D}_{\text {11 }}(2460)$	-	$\mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}$
$\mathrm{D}_{\text {s1 }}{ }^{\prime}(2536)$	1 MeV	D* K
$\mathrm{D}_{\mathrm{s} 2}{ }^{*}(2573)$	17 MeV	$\mathrm{D}^{0} \mathrm{~K}$

- Most have ≥ 2 neutrals ($\pi^{0} \& \mathrm{~V}$), best at $\mathrm{e}^{+} \mathrm{e}^{-}$!
$\left.-\sigma_{b b}{ }^{\left({ }^{\prime}=10.87 G e V\right.}\right) / \sigma_{b b}{ }^{\left({ }_{s}=10.58 G e V\right)} \sim 0.3$
$-f_{s} \sim 0.199 \pm 0.030 \sim 14 \mathrm{M} \mathrm{B}_{\mathrm{s}}{ }^{0}$ in $121 \mathrm{fb}^{-1}$
- Excited production: kinematic smearing
- $\mathrm{BF}\left(\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{B}_{\mathrm{s}}{ }^{*} \mathrm{~B}_{\mathrm{s}}{ }^{*}\right) \sim 90 \%$
$\bullet B_{s}{ }^{*} \rightarrow B_{s} \gamma, m\left(B_{s}{ }^{*}\right)-m\left(B_{s}\right) \simeq 49 \mathrm{MeV}$
$\mathrm{D}_{\mathrm{s} 2}{ }^{*}(2573) 17 \mathrm{MeV} \quad \mathrm{D}^{0} \mathrm{~K}$

$B_{s}{ }^{0} \rightarrow D_{s}{ }^{*} \pm / v @ 121 \mathrm{fb}^{-1}, \mathrm{MC}$

- Untagged approach shown: $\boldsymbol{X}_{\text {miss }}$
- Bud cross feed from~6•10-4 ${ }_{\mathrm{BF}\left(\boldsymbol{B} \rightarrow \mathrm{Ds}\left(^{*}\right) \pm K l v\right)} \times \mathbf{4}_{(\text {fud/fs) }}$ (precision measurement at Belle II)

Resolution: Kinematic smearing due to $\mathrm{Y}(5 \mathrm{~S})$ decay, and γ in $\mathrm{D}_{\mathrm{s}}{ }^{*} \rightarrow \mathrm{D}_{\mathrm{s}} \gamma$

$0.16=\mu\left(D_{s}\right)=(0.15 \pm 50.92) 10^{-3}$

$w \equiv v_{B} \cdot v_{D^{*}}=E_{D^{*}} / m_{D^{*}}=\frac{m_{B}^{2}+m_{X}^{2}-q^{2}}{2 m_{B} m_{D^{*}}}$
Secondary leptons
Prompt leptons from B
Prompt leptons from wrong B_{s}
$D_{s}{ }^{* *}$ I
$\mathrm{D}_{\mathrm{s}}{ }^{*}$ I
Max. efficiency point shown. Work in progress.

$$
X_{\mathrm{mis}}=\frac{\left[E_{\mathrm{beam}}-E_{\Upsilon(5 S)}\left(D_{s}^{*} \ell\right]-\left|\vec{p}_{\Upsilon(5 S)}\left(D_{s}^{*} \ell\right)\right|\right.}{\sqrt{E_{\text {beam }}^{2}-m_{B_{s}}^{2}}}
$$

Yield projections

- (My) Rough estimates for Signal: $\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}(\Phi \pi) / \mathbf{v} X$
${ }^{\bullet} \mathrm{D}_{\mathrm{s}}$ tagging could be extended , e.g. ($\Phi_{\pi,} K_{s} K, K^{*} K$) ($\sim x 3$ eff. $w / r / t$ Belle result)
- Lepton tag is a clean high statistics approach
- \mathbf{B}_{s} Full Recon: take Eff(B^{0}) as a guide
- Too early to quote precise, expected precision on exclusive modes.

			Yields (tagging x efficiency x BF)							
Tag Method	Tag Eff.	$\mathrm{N}_{\mathrm{BS}} / \mathrm{N}_{\mathrm{B}}$	$121 \mathrm{fb}^{-1}\left(5 \mathrm{ab}^{-1}\right)$							
			X/v	\triangle stat	Δ sys	$\mathrm{D}_{\mathrm{s}} / \mathrm{V}$	$D_{s}{ }^{*} / \mathrm{V}$	$D_{\text {s0 }}{ }^{*} / \mathrm{V}$	$D_{\text {s2 }}{ }^{*}$	
Untagged	2	$\mathrm{f}_{5} / \mathrm{f}_{\mathrm{d}, \mathrm{u}} \sim 0.25$	2.7M	-	-	7200	10900	800	1300	
Lepton tag	0.1	$\mathrm{f}_{5} / \mathrm{f}_{\mathrm{d}, \mathrm{u}} \simeq 0.25$	135k	-	-	370 (15,000)	534 (22,000)	$40 \quad(1,600)$		$(2,800)$
$D_{s}: \Phi_{\pi} K_{S} K, K^{*} K$	0.04	$10 \cdot \mathrm{f}_{s} / \mathrm{f}_{\mathrm{d}, \mathrm{u}}$	27k	3\%	7\%	$140(6,000)$	200 (8,500)	16 (650)	(26)	$(1,000)$
\boldsymbol{B}_{s} Full Recon.	0.004	>10	5400	2\%	$\sim 4 \%$	15 (620)	$20 \quad(880)$	2 (70)		(110)

Conclusions

- B-factories have proven to provide useful input to $B \rightarrow D^{* *}$ physics, but there are persistent puzzles needing (much) more $e^{+} e^{-}$data.
- Major upgrade at KEK during 2010-15 to increase L x 40.
- Belle II is essentially a new project: many components and most electronics will be replaced.
- Slow pion tracking, and PID will be enhanced greatly.
- Neutral decay modes and broad resonances (crucial to understand full decay width) will be studied precisely, best done at $\mathrm{e}^{+} \mathrm{e}$.
- Have not yet finished analysing Belle I data! Expect new results in semileptonic and hadronic modes.

Backup

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{* *} \mathrm{Iv}$ Shapes

$$
\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{* *} \mid \mathrm{v}
$$

- Recent calculations in:
- Semileptonic B and $\boldsymbol{B}_{\boldsymbol{s}}$ decays into orbitally excited charmed mesons, L. Segovia, et al.,Physical Review D 84, 094029 (2011), arXiv: 1107.4248
- A lot like ISGW2 (black)

$B \rightarrow D^{* *}$ at Belle II

Belle Inclusive

$$
N\left(D_{s}^{-} \mathrm{e}^{-}\right)=4260 \pm 190 \quad \mathrm{p}\left(\mathrm{e}^{+}\right)[\mathrm{GeV}]
$$

$$
\frac{N\left(D_{s}^{-} e^{-}\right)}{N\left(D_{s}^{-}\right)}=0.0426 \pm 0.0020 \pm 0.0013
$$

$$
\frac{N\left(D_{s}^{-} \mu^{-}\right)}{N\left(D_{s}^{-}\right)}=0.0471 \pm 0.0024 \pm 0.0016
$$

$$
\mathrm{B} \rightarrow \mathrm{D}^{* *} \text { at Belle II }
$$

$N\left(D_{s}{ }^{-} \mathrm{e}^{-}\right)=4760 \pm 230 \mathrm{p}\left(\mu^{+}\right)[\mathrm{GeV}]$

Two component fraction fit: prompt leptons and secondary and fake leptons

Rel. Systematic Uncertainty	\mathbf{e}^{-}	$\boldsymbol{\mu}^{-}$
Lepton ID, fake rate	0.7	1.4
D $_{\text {s }}$ efficiency	0.8	0.8
KK π fit	2.0	2.2
Secondary leptons	1.0	1.5
Continuum	1.1	
Semileptonic Width Composition	1.2	

Inclusive Summary

- Belle: Model independent
- ~10\% limit on SU3 symmetry breaking
- Systematics limited!
- Due to tagging techniques.
- B ${ }_{\text {s }}$ full reconstruction (particularly
$>1 \mathrm{ab}^{-1}$) will help, but there is still some kinematic smearing
- Can still improve $\boldsymbol{f}_{\boldsymbol{s}} \boldsymbol{\&} \boldsymbol{D}_{\boldsymbol{s}} \boldsymbol{X}$ with current 5S data. (not yet measured for $121 \mathrm{fb}^{-1}$)

$$
\frac{\Gamma\left(B_{s}^{0} \rightarrow X \ell \nu\right)}{\Gamma\left(B_{d}^{0} \rightarrow X \ell \nu\right)} \cdot \frac{\tau\left(B_{s}^{0}\right)}{\tau\left(B_{d}^{0}\right)}=\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow X \ell \nu\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow X \ell \nu\right)}
$$

Broad physics program

