$B \to D^{**} \, \ell \, \bar{\nu}_{\ell}$: An experimental overview

Florian Bernlochner

on behalf of the BABAR Collaboration

florian.bernlochner@cern.ch

University of Victoria, BC, Canada

November 27, 2012

Talk overview

Waypoints:

- * Introduction What modes are covered by our $B \to D^{**} \, \ell \, \bar{\nu}_{\ell}$ measurements
- * Recap of essential experimental methods: Tagging and m_{miss}^2
- * Relevant measurements:
- Tagged $B \rightarrow D^{(*)} \pi \ell \bar{\nu}_{\ell}$ measurements: arXiv:0712.3503v1 & arXiv:0711.3252
- Tagged $B \rightarrow D^{**}_{\hookrightarrow D^{(*)}\pi} \ell \bar{\nu}_{\ell}$ measurements: arXiv:0808.0528v1 & arXiv:0711.3252
- Tagged $B \rightarrow D^{(*)} X \ell \bar{\nu}_{\ell}$ measurements: Preliminary Belle
- World averages from HFAG arXiv:1207.1158v1
 - * Tensions between broad state measurements
 - * Experimental limits on non-resonant GR-type decays
 - * Semi-inclusive $B \to D^{(*)} X \ell \bar{\nu}_{\ell}$ v exclusive $B \to D^{**}_{\hookrightarrow D^{(*)}} \ell \bar{\nu}_{\ell}$
 - * Putting everything together: 'Gap' inclusive v exclusive
 - ? Neglected channels: $D^{**} \rightarrow D^{(*)}\pi\pi \& D^{**} \rightarrow D^{(*)}\eta$
 - * Summary and my conclusions

i. Introduction

- \Leftrightarrow What modes are covered by our $B \to D^{**} \ell \bar{\nu}_{\ell}$ measurements?
 - * Three kinds of measurements:
 - \rightarrow Semi-inclusive measurements of $D^{**} \rightarrow D^{(*)}\pi$
 - $\rightarrow~$ Exclusive measurements of $m_{D}(*)_{\pi}$ with resonances which are assigned to 1P
 - → Semi-inclusive measurements of $D^{**} \rightarrow D^{(*)}X$ and sum over all resonances

Leading order Weak b
ightarrow q diagram

Notation used in talk:

- * D**(1P), D**(2S), D**(1D), ...
- * Continuum/Non-resonant decays $\mathcal{B}^{NR}(B \to D^{(*)} \pi \ell \bar{\nu}_{\ell})$

Diagrams contributing to continuum $B\,\rightarrow\,D\pi$

- ii Continuum (or non-resonant) contributions see e.g. [JHEP 1210 (2012) 169]
- * Exclusive branching fractions assigned to $B \to D^{**}_{\hookrightarrow D(*)_{\pi}}(1P) \ell \bar{\nu}_{\ell}$

ii. Experimental methods

Experimental methods: Tagging & m^2_{miss}

* Tagging at the B Factories:

Hadronic B tagging: Reconstruct one B meson and look at rest of the event

Signal side characteristics:

 \rightarrow Decay with missing momentum due to neutrino in final state:

$$\mathbf{m}_{\mathrm{miss}}^2 = \left(p_{\Upsilon(4S)} - p_B \mathrm{tag} - p_D * * - p_\ell \right)^2 \quad \widehat{=} \quad m_l^2$$

* For true $B \rightarrow D^{**} \ell \bar{\nu}_{\ell}$ decays this should peak at 0; for sI with a true D missing particles tend to push distribution to positive values, randomly assigned to either positive or negative values.

* Two dominant sources of background: combinatorial B and continuum

* Energy difference ΔE and beam constrained mass $\mathbf{m}_{bc/ES}$:

$$\Delta E = E_{B_{\text{tag}}} - E_{\text{beam}} \qquad \qquad \mathbf{m}_{bc/ES} = \sqrt{E_{\text{beam}}^2 - \mathbf{p}_{B_{\text{tag}}}^2}$$

 $E_{\rm beam} = \sqrt{s}/2 \, \backsim \, 5.29 \, GeV$

Correctly reconstructed B^{tag} should have $\Delta E \approx 0$ and $m_{bc/ES} \approx m_B$

Blue combinatorial and continuum background; white hadronic B decays (both simulated)

[→] B meson Production at B Factories through well defined initial state: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow b\bar{b}$ \Leftrightarrow charge and momentum correlation of final states completely determined.

iii.a Semi-inclusive $B \rightarrow D^{(*)} \pi \ell \bar{\nu}_{\ell}$

Semi-inclusive $B \rightarrow D^{(*)} \pi \ell \bar{\nu}_{\ell}$ measurements: *BABAR*

Phys.Rev.Lett. 100 (2008) 151802; arXiv:0712.3503v1

- * Tagged measurement: 80% of BABAR dataset (341.1/fb)
 - * Hadronic tag: $B^{\text{tag}} \to DY$ with " $K\&\pi \in Y$ " $\approx \mathcal{O}(1000)$ decay modes
 - 5.27GeV/ c^2 < m_{ES} < 5.29GeV/ c^2 & B^{tag} w. smallest ΔE
 - * Signal/recoil side: lepton with $p_l^* \ge 0.6 \text{ GeV}/c$; reconstruct D and D^* candidates from K and π

Further requirements:

 $m_{D\pi} - m_D > 0.18 \text{ GeV}/c^2$ to veto $B \rightarrow D^* \ell \bar{\nu}_\ell$ events. Total energy not assigned to B^{tag} or signal side less than 1 GeV.

* Events analyzed in fit to $\mathbf{m}^2_{ ext{miss}} = m^2_{
u}$: (PDFs from MC)

- $\begin{array}{l} \rightarrow \quad {\rm e}) \; B^- \rightarrow D^+ \pi^- \; \ell \; \bar{\nu}_\ell \\ {\rm f}) \; B^- \rightarrow D^* + \pi^- \; \ell \; \bar{\nu}_\ell \\ {\rm g}) \; \bar{B}^0 \rightarrow D^0 \pi^+ \; \ell \; \bar{\nu}_\ell \\ {\rm h}) \; \bar{B}^0 \rightarrow D^* \, 0 \pi^- \; \ell \; \bar{\nu}_\ell \end{array}$
- → Yellow: Signal Green/Red: Background from $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ Blue: Down feed from $B \rightarrow D^* \pi \ell \bar{\nu}_{\ell}$ Magenta: continuum
- * Signal BF extracted with normalization channel

 $(B \rightarrow X \, \ell \, \bar{\nu}_{\ell})$, to cancel tagging systematics)

[%]	
$B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$	$0.42 \pm 0.06 \pm 0.03$
$B^+ \rightarrow D^* - \pi^+ \ell^+ \nu_\ell$	$0.59 \pm 0.05 \pm 0.04$
$B^0 \rightarrow \overline{D}{}^0 \pi^- \ell^+ \nu_\ell$	$0.43 \pm 0.08 \pm 0.03$
$B^0 ightarrow ar{D}^{* \ 0} \pi^- \ \ell^+ \ u_\ell$	$0.48 \pm 0.08 \pm 0.04$

Semi-inclusive $B \to D^{(*)} \pi \ell \bar{\nu}_{\ell}$ measurements: *Belle*

Phys.Rev. D77 (2008) 091503; arXiv:0711.3252

* Tagged measurement: 85% of Belle dataset (605/fb)

- * Hadronic tag: $B^{tag} \rightarrow DY$ with " $\pi \in Y$ "
- $m_{ES} > 5.27 \text{GeV}/c^2$ and $|\Delta E| < 40$ MeV
- * Signal/recoil side: lepton with $p_l^* \ge 1.0 \text{ GeV}/c$; reconstruct *D* and *D** candidates from *K* and π
- * Events analyzed in fit to $\mathbf{m}_{\text{miss}}^2 = m_{\nu}^2$:

Continuum and $B\bar{B}$ Background subtracted from data using ΔE and $m_{D^{(*)}}$ sidebands. Down feed from simulation.

- → Fit function: relativistic Breit-Wigner.

* Signal BF extracted with normalization channel

 $(B \rightarrow D \,\ell \,\bar{\nu}_{\ell})$, to cancel tagging systematics)

[%]	
$B^+ ightarrow D^- \pi^+ \ell^+ u_\ell$	$0.40 \pm 0.04 \pm 0.06$
$B^+ \rightarrow D^* - \pi^+ \ell^+ \nu_\ell$	$0.65 \pm 0.08 \pm 0.09$
$B^0 \rightarrow \bar{D}^0 \pi^- \ell^+ \nu_\ell$	$0.42 \pm 0.07 \pm 0.06$
$B^0 ightarrow ar{D}^{* \ 0} \pi^- \ \ell^+ \ u_\ell$	$0.56 \pm 0.21 \pm 0.08$

arXiv:1207.1158v1

* BABAR and Belle are in good agreement:

[%]	BABAR	[%]	Belle
$B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$	$0.42 \pm 0.06 \pm 0.03$	$B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$	$0.40 \pm 0.04 \pm 0.06$
$B^+ \to D^* {}^- \pi^+ \ell^+ \nu_\ell$	$0.59 \pm 0.05 \pm 0.04$	$B^+ \rightarrow D^* - \pi^+ \ell^+ \nu_\ell$	$0.65 \pm 0.08 \pm 0.09$
$B^0 ightarrow ar{D}^0 \pi^- \ell^+ u_\ell$	$0.43 \pm 0.08 \pm 0.03$	$B^0 ightarrow ar{D}^0 \pi^- \ell^+ u_\ell$	$0.42 \pm 0.07 \pm 0.06$
$B^0 ightarrow ar{D}^{*0} \pi^- \ell^+ u_\ell$	$0.48 \pm 0.08 \pm 0.04$	$B^0 ightarrow ar{D}^{*0} \pi^- \ell^+ u_\ell$	$0.56 \pm 0.21 \pm 0.08$

* HFAG averages for Branching Fractions:

(Private average $\hat{=}$ isospin average of both modes with $\tau_{\pm 0} = 1.079 \pm 0.007$)

[%]	HFAG	Private average
$B^+ \rightarrow D^- \pi^+ \ell^+ \nu_\ell$	0.42 ± 0.05	0.44 ± 0.05
$B^+ \rightarrow D^* - \pi^+ \ell^+ \nu_\ell$	0.61 ± 0.05	0.58 ± 0.06
$B^+ \rightarrow D\pi \ell^+ \nu_\ell$	0.63 ± 0.08	0.66 ± 0.08
$B^+ ightarrow D^* \pi \ell^+ u_\ell$	0.92 ± 0.08	0.87 ± 0.09
$B^+ \rightarrow D^{(*)} \pi \ell^+ \nu_\ell$	1.55 ± 0.11	1.53 ± 0.12
[%]	HFAG	Private average
$\bar{B}^0 \rightarrow D^0 \pi^+ \ell^- \bar{\nu}_\ell$	0.43 ± 0.06	0.41 ± 0.05
$\bar{B}^0 \rightarrow D^{*0} \pi^+ \ell^- \bar{\nu}_\ell$	0.49 ± 0.08	0.54 ± 0.06
$\bar{B}^0 \rightarrow D \pi \ell^- \bar{\nu}_\ell$	0.65 ± 0.09	0.61 ± 0.09
$\bar{B}^0 \rightarrow D^* \pi \ell^- \bar{\nu}_\ell$	0.74 ± 0.12	0.80 ± 0.09
-	···· ···==	

The isospin factor applied to $B^+ \rightarrow \overline{D}^{(*)-} \pi^+ \ell^+ \nu_\ell$ or $\overline{B}^0 \rightarrow D^{(*)\,0} \pi^+ \ell^- \overline{\nu}_\ell$ is $\frac{3}{2}$. For isospin average assumed a 100% correlation on the uncertainties between isospin conjugated channels.

iii.b Exclusive $B \to D^{**}_{\hookrightarrow D^{(*)}\pi} \, \ell \bar{\nu}_{\ell}$

Exclusive $B \rightarrow D^{**}_{\rightarrow D(*)\pi} \ell \overline{\nu}_{\ell}$ measurements: BABARPhys.Rev.Lett. 101 (2008) 261802; arXiv:0808.0528v1

Tagged measurement: 97% of BABAR dataset (417/fb)

- * Hadronic tag: $B^{\text{tag}} \to DY$ with " $K\&\pi \in Y$ " $\approx \mathcal{O}(1000)$ decay modes
- 5.27GeV/ c^2 < m_{FS} < 5.29GeV/ c^2 & B^{tag} w. highest Purity
- * Signal/recoil side: lepton with $p_l^* > 0.6 \, \text{GeV}/c$; reconstruct D and D^* candidates from K and π

Further requirements:

 $m_{D\pi} - m_D > 0.18 \text{ GeV}/c^2$ to veto $B \to D^* \ell \, \bar{\nu}_{\ell}$ events.

Analyze $m_{D(*)} - m_{D(*)}$ in windows of \mathbf{m}_{miss}^2

- Variable cut on |m²_{miss}]; relative broad window for Dπ
 Signal (Breit-Wigner * Gaussian), resolution from MC.
- Bkg PDFs (KEYS or Exponential * Gaussian) from MC.
- $D^*\pi \rightarrow D\pi$ down feed fixed and from MC.
- \rightarrow a) $B^- \rightarrow D^{*+}\pi^- \ell \bar{\nu}_\ell$ b) $B^- \rightarrow D^+\pi^- \ell \bar{\nu}_\ell$ c) $\bar{B}^0 \rightarrow D^{*0} \pi^+ \ell \bar{\nu}_{\ell}$ d) $\bar{B}^0 \rightarrow D^0 \pi^- \ell \bar{\nu}_{\ell}$
- $\begin{array}{l} \to \quad \text{Red: } B \to D_1 \, \ell \, \bar{\nu}_\ell \quad \text{Green: } B \to D_2 \, \ell \, \bar{\nu}_\ell \\ \text{Purble: } B \to D_1' \, \ell \, \bar{\nu}_\ell \text{ Magenta: } B \to D_0 \, \ell \, \bar{\nu}_\ell \end{array}$

[%]	$D^{**} \rightarrow D^{(*)}\pi$
$B^+ \rightarrow \bar{D}^0_1 \ell^+ \nu_\ell$	$0.42 \pm 0.05 \pm 0.05$
$B^+ \rightarrow \overline{D}_2^{*0} \ell^+ \nu_\ell$	$0.26 \pm 0.03 \pm 0.06$
$B^+ \rightarrow \overline{D}_1^{\prime 0} \ell^+ \nu_\ell$	$0.41 \pm 0.06 \pm 0.06$
$B^+ \rightarrow \overline{D}_0^0 \ell^+ \nu_\ell$	$0.48 \pm 0.06 \pm 0.08$

Exclusive $B \rightarrow D^{**}_{\hookrightarrow D(*)\pi} \ell \bar{\nu}_{\ell}$ measurements: *Belle* Phys.Rev. D77 (2008) 091503; arXiv:0711.3252

Tagged measurement: 85% of Belle dataset (605/fb)

- * Hadronic tag: $B^{tag} \rightarrow DY$ with " $\pi \in Y$ "
- $m_{ES} > 5.27 \text{GeV}/c^2$ and $|\Delta E| < 40$ MeV
- * Signal/recoil side: lepton with $p_l^* \ge 1.0 \text{ GeV}/c$; reconstruct *D* and *D** candidates from *K* and π
- * Analyze $m_{D^{(*)}\pi} m_{D^{(*)}}$ in windows of \mathbf{m}_{miss}^2
 - Cut on $|\mathbf{m}^2_{miss}| < 0.1 \; \text{GeV}^2/c^4$
 - Continuum and BB Bkg subtracted data using sidebands.
 - Signal (Breit-Wigner; NR shape from MC)
 - $D^*\pi \to D\pi$ down feed fixed and from MC.

a)
$$B^- \to D^+ \pi^- \ell \bar{\nu}_{\ell}$$

b) $B^- \to D^* + \pi^- \ell \bar{\nu}_{\ell}$
c) $\bar{B}^0 \to D^0 \pi^+ \ell \bar{\nu}_{\ell}$
d) $\bar{B}^0 \to D^* 0 \pi^- \ell \bar{\nu}_{\ell}$

* Fit results: Isospin averaged modes; values HFAG rescaled

[%]	$D^{**} \rightarrow D^{(*)}\pi$
$B^+ \rightarrow \bar{D}^0_1 \ell^+ \nu_\ell$	$0.67 \pm 0.10 \pm 0.09$
$B^+ \rightarrow \bar{D}_2^{*0} \ell^+ \nu_\ell$	$0.72 \pm 0.03 \pm 0.06$
$B^+ \rightarrow \bar{D}_1^{\prime 0} \ell^+ \nu_\ell$	$-0.05 \pm 0.09 \pm 0.11$
$B^+ \rightarrow \bar{D}_0^0 \ell^+ \nu_\ell$	$0.37 \pm 0.05 \pm 0.09$

HFAG averages and summary $B \to D^{**}_{\hookrightarrow D^{(*)}\pi} \ell \bar{\nu}_{\ell}$: Narrow states D_1 arXiv:1207.1158v1

* HFAG Summary of D_1 Branching Fractions: (isospin averaged)

$$\begin{array}{c|c} \hline [\%] & \text{HFAG} \\ \hline B^+ \rightarrow \bar{D}_1^0 \, \ell^+ \, \nu_\ell \\ \rightarrow D^* - \pi^+ & 0.285 \pm 0.018 \\ \hline B^+ \rightarrow \bar{D}_1^0 \, \ell^+ \, \nu_\ell \\ \rightarrow D^* \pi & 0.428 \pm 0.027 \end{array}$$

The isospin factor applied to $B^+ \rightarrow \bar{D}^0_1 \, \ell^+ \, \nu_\ell$ with twobody fragmentations is $\frac{3}{2}$.

Hadronic 3-Body modes: $\mathcal{B}(B \rightarrow D_1 \pi) \times \mathcal{B}(D_1 \rightarrow D \pi \pi)$ Phys.Rev. D84 (2011) 092001 *

Estimate $B^+ \rightarrow \bar{D}^0_{1 \hookrightarrow D^{(*)}_{\pi\pi}} \ell^+ \nu_{\ell}$ via naive scaling:

$$R_{D_1} = \frac{\mathcal{B}(B^+ \to D_1^0 \pi^+) \times \mathcal{B}(D_1^0 \to D \pi \pi)}{\mathcal{B}(B^+ \to D_1^0 \pi^+) \times \mathcal{B}(D_1^0 \to D^* \pi)} = 0.67 \pm 0.1$$

Assumes no isospin breaking effects

[%]	Private
$B^+ \rightarrow \bar{D}_1^0 \ell^+ \nu_\ell$	
$\hookrightarrow D^*\pi$	0.428 ± 0.027
$B^+ \rightarrow \bar{D}_1^0 \ell^+ \nu_\ell$	
$\hookrightarrow D\pi\pi$	0.287 ± 0.081
$B^+ \rightarrow \bar{D}_1^0 \ell^+ \nu_\ell$	
$\hookrightarrow \hat{D}^{(*)}\pi(\pi)$	$\textbf{0.715} \pm \textbf{0.091}$

HFAG averages and summary $B \rightarrow D^{**}_{\hookrightarrow D^{(*)}\pi} \ell \bar{\nu}_{\ell}$: Narrow states D_2 arXiv:1207.1158v1

* HFAG Summary of D₂ Branching Fractions:

(isospin averaged)

[%]	HFAG
$B^+ \rightarrow \bar{D}_2^0 \ell^+ \nu_\ell$	
$\hookrightarrow D^{*+}\pi^-$	0.074 ± 0.007
$B^+ \rightarrow \bar{D}_2^0 \ell^+ \nu_\ell$	
$\hookrightarrow \overline{D}^{(*)+}\pi^-$	0.189 ± 0.035
$B^+ \rightarrow \bar{D}_2^0 \ell^+ \nu_\ell$	
$\hookrightarrow D^{(*)}\pi$	0.284 ± 0.050

The isospin factors applied to $B^+ \to \bar{D}_2^0 \, \ell^+ \, \nu_\ell$ or $B^0 \to \bar{D}_2^+ \, \ell^- \, \bar{\nu}_\ell$ with two-body fragmentations is $\frac{3}{2}$. HFAG combined the $D_2 \to D\pi$ channel with $f_{D_2} = 2.2 \pm 0.5$. I've applied a scaling using the PDG value for the resulting HFAG number of $f_{D_2} = 1.56 \pm 0.16$ to obtain the $D^{(*)}\pi$ branching fraction.

* Hadronic 3-Body modes: seem negligible cf. Phys.Rev.Lett. 94 (2005) 221805

HFAG averages and summary $B\to D^{**}_{\hookrightarrow D^{(*)}\pi}\,\ell\bar\nu_\ell\colon {\rm broad\ states}_{{\rm arXiv:1207.1158v1}}$

[%]	HFAG	Semi-inclusive	
$\begin{array}{ccc} B^+ \to \bar{D}_2^0 \ell^+ \nu_\ell \\ \hookrightarrow D \pi \end{array}$	0.12 ± 0.02	[%]	Private average
$B^+ \to D^{**}(1P)_{\text{narrow}} \ \ell^+ \nu_{\ell} \\ \hookrightarrow D\pi$	0.12 ± 0.02	$B^+ \to D\pi \ell^+ \nu_\ell$	0.66 ± 0.08
[%]	HFAG		
$B^+ \rightarrow \bar{D}_1^0 \ell^+ \nu_\ell$		Semi-inclusive:	
$\hookrightarrow D^*\pi$	0.43 ± 0.03		
$B^+ \rightarrow \bar{D}^0_2 \ \ell^+ \ u_{\ell}$		[%]	Private average
$\stackrel{\sim}{\hookrightarrow} D^* \pi$	0.07 ± 0.01	$B^+ \rightarrow D^* \pi \ell^+ \nu_\ell$	0.87 ± 0.09
$B^+ \rightarrow D^{**}(1P)_{narrow} \ell^+ \nu_{\ell}$			
$\hookrightarrow D^*\pi$	0.50 ± 0.03		

* How much space is there for broad or continuum states?

 \rightarrow

$$\begin{split} \mathcal{B}(B^+ \to D\pi \, \ell^+ \, \nu_\ell) &- \mathcal{B}(B^+ \to D^{**}(1P)_{\mathsf{narrow}} \hookrightarrow_{D\pi} \ell^+ \, \nu_\ell) = (0.54 \pm 0.08) \, \% \\ \mathcal{B}(B^+ \to D^* \pi \, \ell^+ \, \nu_\ell) &- \mathcal{B}(B^+ \to D^{**}(1P)_{\mathsf{narrow}} \hookrightarrow_{D^* \pi} \ell^+ \, \nu_\ell) = (0.37 \pm 0.10) \, \% \end{split}$$

HFAG averages and summary $B \to D^{**}_{\hookrightarrow D^{(*)}\pi} \ell \bar{\nu}_{\ell}$: Broad states D_0 arXiv:1207.1158v1

* HFAG Summary of D₀ Branching Fractions:

(isospin averaged)

[%]	HFAG
$B^+ \rightarrow \bar{D}_0^0 \ell^+ \nu_\ell$	
$\hookrightarrow D^-\pi^+$	0.29 ± 0.05
$B^+ \rightarrow \bar{D}_0^0 \ell^+ \nu_\ell$	
$\hookrightarrow D\pi$	0.44 ± 0.08

The isospin factor applied to $B^+ \to \bar{D}_1^0 \ell^+ \nu_\ell$ or $B^0 \to \bar{D}_1^+ \ell^- \bar{\nu}_\ell$ with two-body fragmentations is $\frac{3}{2}$.f

⇒ Tricky measurement but consistent picture (?) : P-Value of combination 66%

HFAG averages and summary $B \to D^{**}_{\hookrightarrow D^{(*)}\pi} \ell \bar{\nu}_{\ell}$: Broad states D'_1

arXiv:1207.1158v1

* HFAG Summary of D'_1 Branching Fractions:

(isospin averaged)

[%]	HFAG
$B^+ \rightarrow \bar{D}_1^{\prime 0} \ell^+ \nu_\ell$	
$\hookrightarrow D^* - \pi^+$	0.13 ± 0.04
$B^+ \rightarrow \bar{D}_1^{\prime 0} \ell^+ \nu_{\ell}$	
$\hookrightarrow D^*\pi$	0.20 ± 0.06

The isospin factor applied to $B^+ \to \bar{D}^0_1 \ \ell^+ \ \nu_\ell$ or $B^0 \to \bar{D}^+_1 \ \ell^- \ \bar{\nu}_\ell$ with two-body fragmentations is $\frac{3}{2}$.

⇒ Not very consistent picture: Combination results in $\chi^2/ndf = 18/2$.

- * How to deal with this?
 - i Blue line $\hat{=}$ average without Belle ...
 - ii Maybe this just reflects our poor understanding ...

HFAG averages and summary $B \rightarrow D^{**}_{\leftarrow \mathcal{D}(^*)_{\pi}} \ell \bar{\nu}_{\ell}$ arXiv:1207.1158v1

* Both measurements included continuum; both got yields compatible with zero

 \rightarrow Both measurements use very different setup: *BABAR* trusts simulation and uses cross feed to gain sensitivity; *Belle* tries to use sidebands and makes strict cuts on m^2_{miss} .

HFAG averages and summary $B \to D^{**}_{\hookrightarrow D^{(*)}\pi} \ell \bar{\nu}_{\ell}$: continuum states arXiv:1207.1158v1

* How much space is there for continuum states? Using the HFAG averages

[%]	HFAG
$B^+ ightarrow ar{D}_2^0 \ell^+ u_\ell$	
$\hookrightarrow D\pi$	0.12 ± 0.02
$B^+ ightarrow ar{D}^0_0 \ell^+ u_\ell$	
$\hookrightarrow D\pi$	0.44 ± 0.08
$B^+ ightarrow D^{stst}(1P) \ell^+ u_\ell$	
$\hookrightarrow D\pi$	0.56 ± 0.08

Semi-inclusive

[%]	Private average
$B^+ \rightarrow D\pi \ell^+ \nu_{\ell}$	0.66 ± 0.08

[%]	HFAG
$B^+ ightarrow ar{D}^0_1 \ell^+ u_\ell$	
$\hookrightarrow D^*\pi$	0.43 ± 0.03
$B^+ \rightarrow \bar{D}_2^0 \ell^+ \nu_\ell$	
$\hookrightarrow D^*\pi$	0.07 ± 0.01
$B^+ \rightarrow \bar{D}_1^{\prime 0} \ell^+ \nu_\ell$	
$\hookrightarrow D^*\pi$	0.20 ± 0.06
$B^+ \rightarrow D^{**}(1P) \ell^+ \nu_\ell$	
$\hookrightarrow D^*\pi$	0.70 ± 0.07

Semi-inclusive:

[%]	Private average
$B^+ \rightarrow D^* \pi \ell^+ \nu_{\ell}$	0.87 ± 0.09

 \rightarrow Continuum $B^+ \rightarrow D\pi \, \ell^+ \, \nu_\ell \& B^+ \rightarrow D^* \pi \, \ell^+ \, \nu_\ell$

$$\begin{split} \mathcal{B}(B^+ \to D\pi \,\ell^+ \,\nu_\ell) &- \mathcal{B}(B^+ \to D^{**}(1P)_{\to D\pi} \,\ell^+ \,\nu_\ell) = (0.10 \pm 0.11) \,\% \\ \mathcal{B}(B^+ \to D^*\pi \,\ell^+ \,\nu_\ell) &- \mathcal{B}(B^+ \to D^{**}(1P)_{\to D^*\pi} \,\ell^+ \,\nu_\ell) = (0.17 \pm 0.11) \,\% \end{split}$$

iii.c Exclusive $B \to D^{(*)}/D^{**}_{\hookrightarrow D^{(*)}\pi} \ell \bar{\nu}_{\ell}$ v Inclusive $B \to X_c \ell \bar{\nu}_{\ell}$

Exclusive v Inclusive

Private averages; arXiv:1207.1158v1

* Summary: Optimistic & non-controversial

[%]	HFAG
$B^+ \rightarrow \bar{D}^0 \ell^+ \nu_\ell$	$\textbf{2.30} \pm \textbf{0.10}$
$B^+ ightarrow ar{D}^{* \ 0} \ \ell^+ \ ar{ u_\ell}$	5.34 ± 0.12
$B^+ \rightarrow \bar{D}_0^0 \ell^+ \nu_\ell$	
$\hookrightarrow D\pi$	0.44 ± 0.08
$B^+ ightarrow ar{D}_1^{\prime 0} \ell^+ u_\ell$	
$\hookrightarrow D^*\pi$	0.20 ± 0.06
$B^+ ightarrow ar{D}^0_1 \ell^+ u_\ell$	
$\hookrightarrow D^*\pi$	0.43 ± 0.03
$B^+ \rightarrow \bar{D}_2^0 \ell^+ \nu_\ell$	
$\hookrightarrow D^{(*)}\pi$	0.28 ± 0.05
$B^+ \rightarrow D^{**}(1P) \ell^+ \nu_\ell$	
$\hookrightarrow D^{(*)}\pi$	1.35 ± 0.12
$B^+ ightarrow ar{D}^0_1 \ell^+ u_\ell$	
$\hookrightarrow D\pi\pi$	$\textbf{0.29} \pm \textbf{0.08}$
$NR B^+ \rightarrow \bar{D} \pi \ell^+ \nu_{\ell}$	0.10 ± 0.11
NR $B^+ \rightarrow \bar{D}^* \pi \ell^+ \nu_\ell$	0.17 ± 0.11
\sum	$\textbf{9.55} \pm \textbf{0.26}$
Incl. $B^+ \to X_c \ell \nu$	10.91 ± 0.14
'Gap' Incl. vs excl.	1.36 ± 0.30

[%]	HFAG
$B^+ \rightarrow \bar{D}^0 \ell^+ \nu_\ell$	$\textbf{2.30} \pm \textbf{0.10}$
$B^+ ightarrow ar{D}^{*0} \ell^+ u_\ell$	5.34 ± 0.12
$B^+ \rightarrow D^{(*)} \pi \ell^+ \nu_\ell$	1.53 ± 0.12
\sum	$\textbf{9.17} \pm \textbf{0.20}$
Incl. $B^+ \to X_c \ell \nu$	10.91 ± 0.14
'Gap' Incl. vs excl.	1.74 ± 0.24

 \Rightarrow Significant Gap between inclusive v exclusive of 1.36 - 1.74 % (4.5 - 7.3 σ)

iv. Neglected channels?

Missing modes

- * Easiest explanation: we are missing some modes
- * Obvious candidates: $B \to D^{(*)} \pi \pi \ell \bar{\nu}_{\ell} \& B \to D^{(*)} \eta \ell \bar{\nu}_{\ell}$
- * Origin? A bit unclear 3-body decays from the 1P states studied hadronically, all but D1 very small
- \rightarrow List of prospective blameworthy sources:
 - * Continuum ?
 - * Beyond 1P? 2S or 1D?
 - * Something else?
 - * BABAR & Belle tell us, it's not $B^+ o D_s^{(*)} \, {\cal K}^+ \, \ell \,
 u_\ell$ PDG Live from this morning

$$\mathcal{B}(B^+ \to D_s^{(*)} \, K^+ \, \ell \, \nu_\ell) = (0.061 \pm 0.012) \,\%$$

- * Lesson from fully inclusive $B \to X \,\ell \, \bar{\nu}_{\ell}$ lepton spectrum:
 - → Missing component has a hard lepton spectrum.
 - $\rightarrow\,$ Continuum type models (e.g. Goity-Roberts type models, cf. <code>Phys. Rev. D 51, 3459</code>) tend to not accommodate this

iv. Semi-inclusive $B \to D^{(*)} X \ell \bar{\nu}_{\ell}$

Semi-inclusive $B \rightarrow D^{(*)} X \ell \bar{\nu}_{\ell}$ Belle preliminary

* From Christian Oswald's talk from ICHEP12:

Semi-inclusive $B \to D^{(*)} X \ell \nu$

Semi-inclusive $B \rightarrow D^{(*)} X \ell \bar{\nu}_{\ell}$ Belle preliminary

Inclusive vs. Exclusive puzzle:

BEL

- Full semilept. width described by semi-inclusive modes:

 $B^{0}: \mathcal{B}(D^{0}X + D^{+}X)/\mathcal{B}(X) = 1.027 \pm 0.018_{\text{stat.}} \pm 0.012_{\mathcal{B}(D)} \pm 0.040_{\text{sys}}$

 $B^-: \ \mathcal{B}(D^0X + D^+X)/\mathcal{B}(X) \ = 1.010 \pm 0.015_{\rm stat.} \pm 0.011_{\mathcal{B}({\rm D})} \pm 0.040_{\rm sys}$

- \Rightarrow Inclusive rate well described by semi-inclusive measurement.
 - * Looking forward to learn from *Belle* what X is.

v. Summary

Experimental status and Outlook

My take:

- * Narrow states leave a relative consistent picture
- * Situation with broad states:
 - * Discussion dominated by two measurements, both use slightly different approaches:
 - i BABAR relies more on MC, makes use of cross feed to gain sensitivity
 - ii Belle uses more data driven background estimates, but has a reduced sensitivity
- \rightarrow Need more experimental input: $j_{1/2} \vee j_{3/2}$ dominated by two measurements!
 - \rightarrow Continuum (e.g. Goity-Roberts type models, cf. Phys. Rev. D 51, 3459) produces $m_{D^{*}\pi}$ mass spectrum not compatible with observation.
 - * Situation with 'Gap':
 - * Missing modes most compelling explanation
 - $\rightarrow B \rightarrow D^{(*)} \pi \pi \ell \bar{\nu}_{\ell} \& B \rightarrow D^{(*)} \eta \ell \bar{\nu}_{\ell}$
 - \rightarrow Semileptonic modes: need more tagged measurements from the *B*-Factories
 - * These decay modes are of course also present in the hadronic modes:
 - \rightarrow Interesting opportunity for LHCb to help the *B*-Factories.

Outlook from BABAR :

* Plan to look at $B \to D^{(*)} \pi \pi \ell \bar{\nu}_{\ell} \& B \to D^{(*)} \eta \ell \bar{\nu}_{\ell}$

Outlook from Belle:

* Plan to look at X cf. slide 27 , maybe more ?