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15 years of discussion about B → D∗∗:
Why is it so important?

I System of L = 1 excitations D∗∗; two doublets (~j = ~̀+~sq)

jP =

(
1

2

)+

[0+, 1+
1/2] broad jP =

(
3

2

)+

[1+
3/2, 2

+] narrow

I B → D∗∗(0+, 1+
1/2)`ν – exceptional case where a huge discrepancy is

found between theory and experiment. One order of magnitude!!!

I Theoretical statements formulated by quark models in 1997 have been
maintained since and confirmed in other approaches.

I Continuous experimental effort has not resolved the discrepancy noted
a long time ago, in the pioneering work of DELPHI. Currently,

TheorymQ→∞ :
BRSL(1/2)

BRSL(3/2)
' 1

10
Exp. :

BRSL(1/2)0+

BRSL(3/2)
' 1

N.B. Belle observe BRSL(1+
1/2

)� BRSL(0+) – contradicts heavy quark symmetry
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15 years of discussion about B → D∗∗:
Why is it so important?

TheorymQ→∞ :
BRSL(1/2)

BRSL(3/2)
' 1

10
Exp. :

BRSL(1/2)0+

BRSL(3/2)
' 1

• mQ →∞ is a useful simplification

• Lattice QCD confirmed the previous quark model results

• Corrections ∝ 1/mn
Q could not explain discrepancy between theory and

experiment Leibovich et al. 1997
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Theoretical results: an explanation

TheorymQ→∞ :
BRSL(1/2)

BRSL(3/2)
' 1

10
Exp. :

BRSL(1/2)0+

BRSL(3/2)
' 1

I spatial wave functions of (1/2)+ and (3/2)+ states are almost identical
I corresponding amplitudes, conventionally called τ1/2(w) and τ3/2(w),
enter in

R =
dΓ1/2

dΓ3/2
=

2

(w + 1)2

(
τ1/2(w)

τ3/2(w)

)2

I R � 1 because

the kinematical factor 2
(w+1)2 < 1

|τ1/2(w)|2 � |τ3/2(w)|2

I |τ1/2(w)|2 � |τ3/2(w)|2 is well understood in relativistic quark models
à la Bakamjian-Thomas and suggested by Uraltsev SR Uraltsev, 2001

N.B in non relativistic limit τ1/2(w) = τ3/2(w)
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Relativistic quark model à la Bakamjian-Thomas (BT)
with Godfrey-Isgur w.f.

� Covariance and Isgur-Wise scaling in the heavy quark limit
� IW functions ξ(n)(w), τ

(n)
1/2(w), τ

(n)
3/2(w) automatically satisfy Bjorken,

Uraltsev SR,... (explicit laboratory of the OPE)

} Fixed number of constituents; not a field theory.
But : exact representations of the Poincaré group.

} Complete separation between global variables (~P, ~R, ~S) and internal relative
variables. Both types of variables commute

} Rest frame Hamiltonian (Mass Operator) depends on relative coordinates.
W.f. at rest are eigenstates of the mass operator

} Unitary transformation: w.f. at rest → Lorentz boost (LB) −→ w.f. in
motion; LB is independent on interaction and contains Wigner rotations

} Mass operator taken from the Godfrey-Isgur model (the best model for
observed spectroscopy)

⇒ BT approach does not introduce ANY extra parameter
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Illustration of validity of the BT approach

• Using Godfrey-Isgur w.f., the BT approach reproduces remarkably well the lattice
QCD results for radial distribution of various current densities in the mQ →∞ limit

• Example of the density ρA(r): 〈B1|ū~γγ5d |B∗0 〉 =

Z ∞
0

ρA(r)d~r

B1, B∗0 being (1/2)+-states

Orsay Group, 2011
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Explanation why τ1/2(w)� τ3/2(w) in BT approach

τ3/2(1)− τ1/2(1) =
1

2

∫ ∞
0

dp p2 φ1(p)
p

p0 + m
φ0(p)

w = 1 corresponds to q2
max = (mB − mD∗∗ )2, i.e. zero-recoil

} φL=0,1(p) are the (positive) radial wave functions; no nodes

} for simplicity φ1(p) is same for all four states

}
p

p0 + m
comes from the Wigner rotation of the light quark, which acts

differently on (1/2)+ and (3/2)+ states Morenas et al. 1997

} τ3/2(1)− τ1/2(1) is positive and large for relativistic internal quark
velocities, O(v/c)

N.B. in the non-relativistic limit, τ3/2(1)− τ1/2(1) = 0
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Results for IW functions in the BT model

Morenas et al. 1997

I Elastic IW function B → D(∗) ξ(w) =

(
2

w + 1

)2ρ2

ρ2 = 1.02

I Inelastic IW functions B → D∗∗

τ1/2(w) = τ1/2(1)

(
2

w + 1

)2σ2
1/2

τ1/2(1) = 0.22 σ2
1/2 = 0.83

τ3/2(w) = τ3/2(1)

(
2

w + 1

)2σ2
3/2

τ3/2(1) = 0.54 σ2
3/2 = 1.50
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Lattice QCD, static

τ(1)’s calculable through operators with derivatives, at v = (1, 0, 0, 0):

〈0+|hvγ
iγ5D

jhv |0−〉 ∝ τ1/2(1)

〈2+|hv (γD){ij}γ5hv |0−〉 ∝ τ3/2(1)

I Quenched QCD mq ∼ ms , static b and c
Becirevic et al. (2005), Blossier et al. (2005)

τ1/2(1) ∼ 0.3− 0.4 τ3/2(1) ∼ 0.5− 0.6

I Unquenched QCD ms/6 . mq . ms , static b and c
Blossier et al. (2009)

τ1/2(1) = 0.29± 0.03 τ3/2(1) = 0.52± 0.03

X Results agree with BT [τ1/2(1) = 0.22, τ3/2(1) = 0.54]
× Desired: inclusion of the propagating c quark and w 6= 1

[expansion in 1/mc unreliable]
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Phenomenology of the BT model: 1) semileptonic rates

Disregarding 1/mQ effects, there follow predictions for SL decays. Small
numbers are herefrom marked in red (1/10 with respect to dominant BR)

L = 0 BR(B → D`ν) = 1.95 · 10−2, BR(B → D∗`ν) = 5.90 · 10−2

L = 1 BR(B → D
1/2
0 `ν) = 0.6 · 10−3, BR(B → D

1/2
1 `ν) = 0.7 · 10−3

BR(B → D
3/2
1 `ν) = 0.45 · 10−2, BR(B → D

3/2
2 `ν) = 0.7 · 10−2

Ground state: BR and ξ(w) agree very well with experiment

L = 1 states: strong disagreement with experiment for j = 1/2
states

N.B.: In non-leptonic decays, assuming factorisation, theory and

experiment agree also for L = 1 states!! (see below)
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mQ →∞ approximation

I Limit mQ →∞ is useful
A number of advantageous properties: heavy quark symmetry (HQS),
Sum Rules, covariance of matrix elements in the BT approach...
“Economical” (=cheap) for the lattice [Wilson lines for heavy quarks]

I 1/mQ corrections seem moderate in BR
especially when one sums over the members of a j-doublet;
cannot explain discrepancies of one order of magnitude claimed in
semileptonic decays.

1/mQ corrections are not large for B → D(∗) [lattice QCD and models]
1/mQ corrections for B → D∗∗: model calculation (BT) in progress (covariance lost!)
1/mQ corrections for B → D∗∗: lattice calculation in progress (c.f. talk by Morenas)
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Semileptonic data: Experiment versus Theory

Decay mode BELLE BABAR BT model

BRSL(B → D
1/2
0 ) (0.36± 0.09) 10−2 (0.42± 0.09) 10−2 0.6 · 10−3

BRSL(B → D
1/2
1 ) < 1.05 · 10−3 (0.40± 0.06) 10−2 0.7 · 10−3

BRSL(B → D
3/2
1 ) (0.93± 0.22) 10−2 (0.64± 0.15) 10−2 0.45 · 10−2

BRSL(B → D
3/2
2 ) (0.54± 0.12) 10−2 (0.39± 0.1) 10−2 0.7 · 10−2

BR from charged B; 2+ from Dπ channel

• Experiments disagree on BRSL(B → D∗∗) [c.f. BRSL(B → D
1/2
1 )]
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Semileptonic data: Experiment versus Theory

Decay mode BELLE BABAR BT model

BRSL(B → D
1/2
0 ) (0.36± 0.09) 10−2 (0.42± 0.09) 10−2 0.6 · 10−3

BRSL(B → D
1/2
1 ) < 1.05 · 10−3 (0.40± 0.06) 10−2 0.7 · 10−3

BRSL(B → D
3/2
1 ) (0.93± 0.22) 10−2 (0.64± 0.15) 10−2 0.45 · 10−2

BRSL(B → D
3/2
2 ) (0.54± 0.12) 10−2 (0.39± 0.1) 10−2 0.7 · 10−2

I j = 3/2 in agreement with theory when both modes are summed
Reversed hierarchy of separate modes is due to 1/mQ -corrections Leibovich et al. 1997

I j = 1/2 completely at odds with theory
BaBar problem −→ |τ1/2|2 ' |τ3/2|2 Vs. theory |τ1/2|2 � |τ3/2|2

Belle problem −→ in conflict with HQS in j = 1/2

⇒ ”1/2 semileptonic puzzle”
Since the pioneering work of DELPHI, the puzzle remains as puzzling as ever.
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Phenomenology: 2) Importance of non-leptonic decays to
elucidate the problem

• puzzling situation in semileptonic decays
⇒ non-leptonic B-decays might help X Jugeau et al 2005

• BR(B → D∗∗π) have been measured by BaBar and Belle X

• BR(B → D∗∗π) are much lower than BR(B → D∗∗`ν) ×
detection efficiency is however much better X
⇔ much more observed B → D∗∗π events X

Several Thousands of observed B → D∗∗π events
Vs. Several Hundreds of BR(B → D∗∗`ν) events

• BR’s predictable within the factorization approximation Neubert 1998
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Class I non-leptonic decays

B0 D
∗∗−

π+

b̄ c̄

d d

d̄

u

W

Class I (a)

B0

π+

D
∗∗−

b̄

c̄

d

d̄

d u

W

Class I (b)

Pion emission: “B → D∗∗” × fπ B Annihilation
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Class III non-leptonic decays

B+ D
∗∗0

π+

b̄ c̄

u u

d̄

u

W

Class III (a)

B+

π+

D
∗∗0

b̄

u

c̄

u

d

ū

W

Class III (b)

Pion emission: “B → D∗∗” × fπ B Annihilation

B+ π+

D
∗∗0

b̄ d̄

u u

u

c̄

W

Class III (c)

D∗∗ emission: “B → π” ×fD∗∗
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Nonleptonic data

Decay channel Class I decays (π emission) Class III (π + D∗∗ emission)

D0π
+ (1.0± 0.5)× 10−4 (0.96± 0.27)× 10−3

D
1/2
1 π+ < 1× 10−4 (0.75± 0.17)× 10−3

D
3/2
1 π+ (0.82+0.25

−0.17)× 10−3 (1.51± 0.34)× 10−3

D2π
+ (0.49± 0.07)× 10−3 (0.82± 0.11)× 10−3

I All entries are of order 10−3 except the red ones that are O(10−4)

I A striking difference in Class I:
∼ 10−4 for j = 1/2 and ∼ 10−3 for j = 3/2 (a factor 1/10)

In Class III all j are of the same order ∼ 10−3 [Why is that so?!!]
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Class I decays: Theory/Experiment

I Using the factorisation and the form factors computed at q2 ' 0 with
BT model (mQ →∞) one obtains

B → D
1/2
0 π : 1.3 · 10−4 B → D

1/2
1 π : 1.1 · 10−4

B → D
3/2
1 π : 1.3 · 10−3 B → D

3/2
2 π : 1.1 · 10−3

=⇒ “j = 1/2”

“j = 3/2”
=

1

10
in agreement with experiment [O(1/10)]

Striking agreement between experiment and theory!

N.B. Observed difference between B(B → D
3/2
1 π) and B(B → D

3/2
2 π) is

due to 1/mQ corrections.
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Class III decays: Theory/Experiment

I Great difference between class III and class I experimental results

• j =
3

2
rates are similar in size [class I & class III are O(10−3)]

• j =
1

2
rates differ in size [“class III” � “class I”]

Class III j = 1/2 is as large as j = 3/2 [O(10−3)]

I Easily explained: In class III, there is an extra D∗∗-emission diagram
which is suppressed for j = 3/2, but not for j = 1/2 (HQS).

=⇒ the hierarchy of class I [BRNL(1/2)� BRNL(3/2)] completely

disappear in class III.

Surprisingly, in contrast to the semileptonic data
there is a complete theoretical understanding of the NL ones.
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Conclusions and Proposal

Theoretical predictions at mQ →∞ seem robust; 1/mQ corrections
could not change the order of magnitude of the decay rates

Non-leptonic data confirm the theoretical expectations

Main problem: semileptonic decays and concerns only B → D1/2

decays; Decay to narrow B → D3/2 are OK

Semileptonic decays B → D1/2: experimental results are
incompatible among themselves and with theory

I Several experimental data are at odds with dynamical QCD predictions

I One even violates the HQS within the multiplet

Radial excitations cannot change the predicted rates into D1/2
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Conclusions and Proposal (contd.)

Possible origin of the problem: misinterpretation of broad
resonances (Γ ' 300 MeV) due to difficulties in the empirical
separation of the resonance from the continuum, especially with the
lack of the partial wave analysis

I No safe theory of continuum; Similar difficulties are well known for

baryons for which the experimental conditions are much more favorable

Problem of dealing with broad resonances is also present in
non-leptonic modes but it is less serious because there are much
more observed events than in the SL decays

To test the above explanation in an optimal situation one can study
the transitions Bs → Ds0, where Ds0 is j = 1/2-state but it is
narrow!
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TRANSPARENTS DE RESERVE
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Inelastic transitions D(∗)
(

1
2

−)→ D∗∗
(

1
2

+
)

:

theoretical constraints

Sum rules from QCD in the heavy quark limit (εn = mD(n) −mD )

X
n

|τ (n)
3/2

(1)|2−
X

m

|τ (m)
1/2

(1)|2 =
1

4

2
X

n

ε2
n|τ

(n)
3/2

(1)|2+
X

m

ε2
m|τ

(m)
1/2

(1)|2 =
1

3
µ2
π

2
X

n

ε2
n|τ

(n)
3/2

(1)|2−2
X

m

ε2
m|τ

(m)
1/2

(1)|2 =
1

3
µ2

G

B∗ − B splitting → µ2
G (1 GeV) = (0.35± 0.03) GeV2

Inclusive moments B → Xc`ν → µ2
π(1 GeV) = (0.40± 0.04) GeV2

µ2
π − µ2

G = 9
X

m

ε2
m|τ

(m)
1/2

(1)|2 → ε2
0|τ

(0)
1/2

(1)|2 ≤ 1

9
[µ2
π − µ2

G ]

Naturally one expects

ε1/2(1) ∼ (300− 500) MeV
˛̨̨
τ

(0)
1/2

(1)
˛̨̨
. 0.15− 0.25
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The question of radial excitations

Two new states observed at BABAR (2010) in D(∗)π can be

interpreted as a doublet 1
2

−
of radial excitation n = 1 :

D’(0−)(2.54) (Γ = 130MeV ) D’∗(1−)(2.61) (Γ = 90MeV )

For the elastic IW function ξ(n=0)(1) = 1

In the inelastic case B → D(n=1)`ν ξ(n=0→n=1)(1) = 0
→ then there is of course a well known suppression of
BR(B → D(n=1)`ν) in the heavy quark limit
But in addition,in the BT model, one finds a much smaller value
of ξ(n=0→n=1) than Galkin et al. . This conclusion is not spoiled
with finite masses. The first radial excitation contribution is
negligible. (Proposal). Also found with other w.f., although less
pronounced.

( According to Galkin et al. quark model : BR(B → D′(∗)`ν) ∼ 0.4%, finite mass effects small : 30%)
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BELLE (2007)

Notation BR(B → D∗∗)part = BR(B → D∗∗`ν)×BR(D∗∗ → D(∗)π+)

Dπ modes

BR(B− → D
1/2
0

0)part = (0.24± 0.06)% BR(Bd → D
1/2
0

+)part = (0.20± 0.08)%

BR(B− → D
3/2
2

0)part = (0.22± 0.05)% BR(Bd → D
3/2
2

+)part = (0.22± 0.05)%

D∗π modes

BR(B− → D
1/2
1

0)part < 0.07 (90% C.L.) BR(Bd → D
1/2
1

+)part < 0.5 (90%
C.L.)

BR(B− → D
3/2
1

0)part = (0.42± 0.10)% BR(Bd → D
3/2
1

+)part = (0.54± 0.21)%

BR(B− → D
3/2
2

0)part = (0.18± 0.07)% BR(Bd → D
3/2
2

+)part < 0.3 (90% C.L.)

⇒ N.B. strong violation of HQS in j = 1/2
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BABAR (2008)
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