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Bjorken-like Sum Rules and the Lorentz Group

Well-known that the transitions Hb → Hc`ν like

Meson transitions Bd → D`ν Bd → D∗`ν
Baryon transition Λb → Λc`ν

are related to the exclusive determination of |Vcb|

Many form factors but Heavy Quark Symmetry SU(2Nf )
→ form factors given by a single function ξ(w) (IW function)

Tension between inclusive and exclusive determinations of |Vcb|

But my purpose is only to expose new interesting theoretical results
on the properties of the Heavy Quark Effective Theory of QCD
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Heavy Quark Symmetry

Elastic meson transitions Bd → D`ν Bd → D∗`ν

Light cloud 1
2

−
combines with heavy quark spin sQ = 1

2

→ JP = 0−(D) and 1−(D∗) ground states

By spin-flavor Heavy Quark Symmetry SU(2Nf ) (Nf heavy flavors)

six form factors (f0, f+ for B → D), (V , A0, A1, A2 for B → D∗)

reduce to a single Isgur-Wise function ξ(w)
(
w =

m2
B+m2

D−q2

2mBmD

)
for the light cloud (L = 0, sq = 1

2 ) transition 1
2

− → 1
2

−

Excited meson transitions Bd → D∗∗`ν (L = 1, D∗∗ of P = +)

L = 1, sq = 1
2 : light cloud transitions 1

2

− → 1
2

+
and 1

2

− → 3
2

+

two IW functions τ1/2(w), τ3/2(w) D∗∗ : 0+
1/2, 1

+
1/2, 1

+
3/2, 2

+
3/2
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Bjorken and Uraltsev Sum Rules

Bjorken SR ρ2 = 1
4 +

∑
n

[
|τ (n)

1/2(1)|2 + 2|τ (n)
3/2(1)|2

]
→ ρ2 > 1

4

Uraltsev SR
∑

n

[
|τ (n)

3/2(1)|2 − |τ (n)
1/2(1)|2

]
= 1

4

Bjorken (1990-1991) + Uraltsev (2001) → ρ2 > 3
4

Bound obtained in Bakamjian-Thomas quark models
(Le Yaouanc et al. 1996)

• covariant for mQ →∞

• explicit Isgur-Wise scaling

• satisfying Bjorken and Uraltsev SR
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Isgur-Wise functions and Sum Rules in HQET

(Bjorken; Isgur and Wise; Uraltsev; Le Yaouanc et al.)

Consider the non-forward amplitude

B(vi )→ D(n)(v ′)→ B(vf ) (wi = vi · v ′,wf = vf · v ′,wif = vi · vf )

SR obtained from the OPE

LHadrons(wi ,wf ,wif ) = ROPE (wi ,wf ,wif )

LHadrons : sum over D(n) states ROPE : OPE counterpart

∑
D(n) < B f (vf )|Γf |D(n)(v ′) >< D

(n)
(v ′)|Γi |Bi (vi ) > ξ(n)(wi )ξ

(n)(wf )

+ Other excited states and IW functions = −2ξ(wif ) < B f (vf )|Γf P
′
+Γi |Bi (vi ) >

P ′+ =
1 + /v ′

2
: positive energy projector on the intermediate c
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Light cloud angular momentum j and bound state spin J

B : pseudoscalar ground state (jP , JP) =
(

1
2

−
, 0−

)
D(n) : tower (jP , JP), J = j ± 1

2 , j = L± 1
2 ,P = (−1)L+1 (Falk, 1992)

Heavy quark currents : hv ′Γihvi hvf Γf hv ′

Domain of the variables (wi ,wf ,wif ) :

wi ≥ 1 wf ≥ 1

wiwf −
√

(w2
i − 1)(w2

f − 1) ≤ wif ≤ wiwf +
√

(w2
i − 1)(w2

f − 1)

For wi = wf = w , the domain becomes :

w ≥ 1 1 ≤ wif ≤ 2w2 − 1
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Γi = /v i Γf = /v f → Vector SR

(w + 1)2
∑

L≥0
L+1

2L+1 SL(w ,wif )
∑

n

[
τ

(L)(n)
L+1/2(w)

]2

+
∑

L≥1 SL(w ,wif )
∑

n

[
τ

(L)(n)
L−1/2(w)

]2
= (1 + 2w + wif ) ξ(wif )

Γi = /v iγ5 Γf = /v f γ5 → Axial SR

∑
L≥0 SL+1(w ,wif )

∑
n

[
τ

(L)(n)
L+1/2(w)

]2

+ (w − 1)2
∑

L≥1
L

2L−1SL−1(w ,wif )
∑

n

[
τ

(L)(n)
L−1/2(w)

]2

= − (1− 2w + wif ) ξ(wif )

IW functions τ
(L)(n)
L±1/2(w) : 1

2

− →
(
L± 1

2

)P
,P = (−1)L+1
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SL(w ,wif ) is a Legendre polynomial :

SL(w ,wif ) =
∑

0≤k≤L/2 CL,k

(
w2 − 1

)2k (
w2 − wif

)L−2k

CL,k = (−1)k (L!)2

(2L)!
(2L−2k)!

k!(L−k)!(L−2k)!

Differentiating the Sum Rules
[
dp+q(LHadrons−ROPE )

dwp
if dw

q

]
wif =w=1

= 0

(going to the corner of the domain w → 1, wif → 1)

one finds constraints on the derivatives ξ(n)(1), in particular

ρ2 = −ξ′(1) ≥ 3
4 ξ′′(1) ≥ 1

5

[
4ρ2 + 3(ρ2)2

]
Non-trivial inequalities

Non-forward amplitude (Uraltsev) B(vi )→ D(n)(v ′)→ B(vf )
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The Legendre polynomial SL(wi ,wf ,wif )

SL(wi ,wf ,wif ) = vf ν1 ...vf νLT
vf ν1

...vf νL ,viµ1
...viµLviµ1 ...viµL

Projector on polarization tensor of integer spin L
T vf ν1

...vf νL ,viµ1
...viµL =

∑
λ ε
′(λ)∗ν1...νLε′(λ)µ1...µL (depends on v’)

Polarization tensor ε′(λ)µ1...µL is symmetric, traceless and transverse

gµiµj ε
′(λ)µ1...µL = v ′µi ε

′(λ)µ1...µL = 0 Examples of projector :

L = 1 Tµν = −gµν + v ′µv ′ν

L = 2 Tµν,ρσ = 1
6 [−2gµνgρσ + 3 (gµρgνσ + gµσgνρ)

+2 (gµνv ′ρv ′σ + gρσv ′µv ′ν) + 4v ′µv ′νv ′ρv ′σ

−3 (gµρv ′νv ′σ + gνσv ′µv ′ρ + gνρv ′µv ′σ + gµσv ′νv ′ρ)]

SL(wi ,wf ,wif ) =
∑

0≤k≤L/2

CL,k(w2
i − 1)k(w2

f − 1)k(wiwf −wif )L−2k

CL,k = (−1)k (L!)2

(2L)!
(2L−2k)!

k!(L−k)!(L−2k)!
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Derivation of sum rules and inequalities

Differentiating the Sum Rule LHadrons(w ,wif ) = ROPE (w ,wif )(
dp+qLHadrons
dwp

if dw
q

)
wif =w=1

=
(
dp+qROPE

dwp
if dw

q

)
wif =w=1

Choosing the currents

ξ(L)(1) = 1
4

(−1)LL!
∑

n

[
L+1

2L+1
4[τ

(L)(n)
L+1/2

(1)]2 + [τ
(L−1)(n)
L−1/2

(1)]2 + [τ
(L)(n)
L−1/2

(1)
]2

L = 1 → Bjorken SR ρ2 = 1
4 +

∑
n

[
|τ (n)

1/2(1)|2 + 2|τ (n)
3/2(1)|2

]
∑

n

[
L

2L+1
[τ

(L)(n)
L+1/2

(1)]2 − 1
4

[τ
(L)(n)
L−1/2

(1)]2
]

=
∑

n
1
4

[τ
(L−1)(n)
L−1/2

(1)]2

L = 1 → Uraltsev SR
∑

n

[
|τ (n)

3/2(1)|2 − |τ (n)
1/2(1)|2

]
= 1

4
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Inequalities for derivatives

Slope ρ2 = −ξ′(1) = 3
4 [1 + [τ

1)(n)
1/2 (1)]2] → ρ2 > 3

4

Curvature σ2 = ξ′′(1) = 5
4

∑
n

[
[τ

(1)(n)
3/2 (1)]2 + [τ

(2)(n)
3/2 (1)]2

]
> 5

4

∑
n[τ

(1)(n)
3/2 (1)]2 = 5

4ρ
2 > 15

16

L-th derivative (−1)Lξ(L)(1) > 2L+1
4 (−1)L−1ξ(L−1)(1) > (2L+1)!!

22L

4
3ρ

2 + (ρ2)2 − 5
3σ

2 +
∑

n 6=0[ξ′(n)(1)]2 = 0 ( 1
2

−
excited states)

→ σ2 > 1
5

[
4ρ2 + 3(ρ2)2

]
new improved bound

term 3
5 (ρ2)2 dominant in non-relativistic limit for the light quark
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The so-called BPS limit of HQET

µ2
π = µ2

G → −ξ′(1) = ρ2 = 3
4 (Uraltsev, 2001)

Using the Sum Rules and by induction → (−1)Lξ(L)(1) = (2L+1)!!
22L

Therefore BPS implies the explicit form ξ(w) =
(

2
w+1

)3/2

Defined limit of HQET → explicit form for the elastic IW function

This limit has a simple group theoretical interpretation
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Isgur-Wise functions and the Lorentz group

Matrix element of a current between heavy hadrons factorizes into
a trivial heavy quark current matrix element
and a light cloud overlap (that contains the long distance physics)

< H ′(v ′)|JQ′Q(q)|H(v) > =

< Q ′(v ′),±1
2 |J

Q′Q(q)|Q(v),±1
2 >< v ′, j ′,M ′|v , j ,M >

The light cloud follows the heavy quark with the same four-velocity

Isgur-Wise functions : light cloud overlaps ξ(v .v ′) = < v ′|v >

Factorization valid only in absence of hard radiative corrections
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Light cloud Hilbert space

Sensible hypothesis : light cloud states form a Hilbert space

on which acts a unitary representation of the Lorentz group

Λ→ U(Λ) U(Λ)|v , j , ε > = |Λv , j ,Λε >

|v , j , ε > =
∑

M(Λ−1ε)M U(Λ)|v0, j ,M >

Λv0 = v v0 = (1, 0, 0, 0) Λ−1ε : polarization vector at rest

Defines in Hilbert space H of unitary representation of SL(2,C )

the states |v , j , ε > whose scalar products define the IW functions

in terms of |v0, j ,M > (SU(2) multiplets in SU(2) ⊂ SL(2,C ))
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Illustration with the simpler case of baryons with j = 0

Baryons Λb(v), Λc(v) (Sqq = 0, L = 0 in quark model language)

The Isgur-Wise function writes

ξ(v .v ′) = < U(Bv ′)φ0|U(Bv )φ0 >

|φ0 > represents the light cloud at rest and Bv , Bv ′ are boosts

ξ(w) = < φ0|U(Λ)φ0 > Λv0 = v v0 = w

Λ is for instance the boost along Oz

Λτ =

(
eτ/2 0

0 e−τ/2

)
w = ch(τ)

Method completely general, for any j and any transition j → j ′
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Decomposition into irreducible representations

The unitary representation U(Λ) is in general reducible

Decompose it into irreducible representations Uχ(Λ)

Hilbert space H made of functions ψ : χ ∈ X → ψχ ∈ Hχ

Scalar product in H

< ψ′|ψ > =
∫
X < ψ′χ|ψχ > dµ(χ)

χ ∈ X : irreducible unitary representation
dµ(χ) : a positive measure

(U(Λ)ψ)χ = Uχ(Λ)ψχ ψχ ∈ Hχ

Hχ : Hilbert space of χ on which acts Uχ(Λ)
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Integral formula for the Isgur-Wise function

Notation ξχ(w) = < φ0,χ|Uχ(Λ)φ0,χ >

irreducible Isgur-Wise function corresponding to irreducible χ

Isgur-Wise function ξ(w) =
∫
X0
ξχ(w) dν(χ)

positive normalized measure dν(χ)
∫
X0

dν(χ) = 1

X0 ⊂ X irreducible representations of SL(2,C )
containing a non-zero SU(2) scalar subspace (j = 0 case)

Irreducible IW function ξχ(w) when ν is a δ function
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Irreducible unitary representations of the Lorentz group

Näımark (1962)

Principal series χ = (n, ρ)

n ∈ Z and ρ ∈ R (n = 0, ρ ≥ 0; n > 0, ρ ∈ R)

Hilbert space Hn,ρ

< φ′|φ > =
∫
φ′(z) φ(z) d2z d2z = d(Rez)d(Imz)

Unitary operator Un,ρ(Λ)

(Un,ρ(Λ)φ)(z) =
(
α−γz
|α−γz|

)n
|α− γz |2iρ−2 φ

(
δz−β
α−γz

)
Λ =

(
α β
γ δ

)
αδ − βγ = 1 (α, β, γ, δ) ∈ C

If n odd n
2 ≤ j → j = 1

2 → n = 1 for the meson case
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Irreducible IW functions in the meson case jP = 1
2

−

Need ξχ(w) = < φχ1
2
,M
|Uχ(Λτ )φχ1

2
,M
> (Λτ : boost, w = ch(τ))

φχ1
2
,M

orthonormal basis of Hχ adapted to rotation group SU(2)

Compute transformed elements Uχ(Λτ )φχ1
2
,M

(spin complications)

For j = 1
2 only the principal series of representations contributes

Using scalar products for principal class of representations (ρ real)

ξρ(w) = 1
cosh(τ)+1

1
sinh(τ)

4
4ρ2+1

[sinh
(
τ
2

) cos(ρτ) + 2ρ cosh
(
τ
2

) sin(ρτ)]

Integral formula for the Isgur-Wise function ξ(w)

ξ(w) =
∫
ξρ(w) dν(ρ) dν(ρ) positive measure

∫
dν(ρ) = 1
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Constraints on the derivatives of the Isgur-Wise function

Derivative ξ(k)(1) : expectation value of a polynomial of degree k

ξ(k)(1) = (−1)k 1
22k (2k+1)!!

<
∏k

i=1[(2i + 1)2 + 4ρ2] >

In terms of moments of a positive variable µn = < xn > (x = ρ2)

ξ(1) = µ0 = 1

−ξ′(1) = 3
4 + 1

3µ1

ξ′′(1) = 1
240 (225 + 136µ1 + 16µ2)

...

Moments µk in terms of derivatives ξ(1), ξ′(1), ... ξ(k)(1)

µ0 = ξ(1) = 1

µ1 = 9
4 − 3 ξ′(1)

µ2 = 3
16 [27 + 136ξ′(1) + 80ξ′′(1)]

...
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Constraints on moments of a variable with positive values

det [(µi+j)0≤i ,j≤n] ≥ 0 det [(µi+j+1)0≤i ,j≤n] ≥ 0

Lower moments

µ1 ≥ 0

µ2 ≥ µ2
1

...

That imply for the derivatives of the Isgur-Wise function

ρ2 ≥ 0

ξ′′(1) ≥ 1
5

[
4ρ2 + 3(ρ2)2

]
...

Same results as with the Sum Rule approach
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Consistency test for any Ansatz of the Isgur-Wise function

Integral representation of the Isgur-Wise function (w = cosh(τ))

ξ(w) =
∫

1
cosh(τ)+1

1
sinh(τ)

4
4ρ2+1

[sinh
(
τ
2

) cos(ρτ) + 2ρ cosh
(
τ
2

) sin(ρτ)] dν(ρ)

dν(ρ) is a positive measure satisfying
∫
dν(ρ) = 1

Can invert by Fourier transform

ξ̂(τ) ≡ (cosh(τ) + 1) sinh(τ)ξ(ch(τ))

(F ξ̂)(σ) = 1
2π

∫∞
−∞ e iτσ(cosh(τ) + 1) sinh(τ) ξ(ch(τ)) dτ

→ check if an Ansatz for ξ(w) satisfies it with positive measures
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Phenomenological one-parameter examples

• Linear form ξ(w) = 1− c(w − 1)

Does not satisfy the integral representation for any value of c

• Exponential form ξ(w) = exp[−c(w − 1)]

Does not satisfy the integral representation for any value of c

• ”Dipole” form ξ(w) =
(

2
1+w

)2c

Satisfies the integral representation if the slope c ≥ 3
4

• The BPS form ξ(w) =
(

2
1+w

)3/2
(c = 3

4 )

is an irreducible Isgur-Wise function (representation with ρ = 0)
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Two other new rigorous results on Isgur-Wise functions

• The Bjorken-like Sum Rules imply that
the Isgur-Wise function is a function of positive type :∫

d3~v
v0

d3~v ′

v ′0
ψ(v ′)∗ ξ(v .v ′) ψ(v) ≥ 0 for any ψ(v)

• There is a complete equivalence between the Sum Rule approach
and the Lorentz group approach :

- The Lorentz group approach implies that ξ(w) is of positive type

- The Sum Rule approach implies the Lorentz group approach
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Conclusions

• Considering the non-forward amplitude in the heavy quark limit,
Bjorken-like Sum Rules give strong bounds on the derivatives of
the Isgur-Wise function

• Decomposing into irreducible representations a unitary
representation of the Lorentz group → one gets an integral formula
for the Isgur-Wise function with positive measure

• Derivatives of the IW function given in terms of moments of a
positive variable → inequalities between the derivatives
the same as obtained from Bjorken-like Sum Rules

• Consistency test for any Ansatz of the IW function

• Applications to phenomenological examples

• Sum Rules → IW function is a function of positive type

• Equivalence between Sum Rule and Lorentz group approaches
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Back up slides
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New rigorous results on Isgur-Wise functions : motivations

At LHC, many more urgent subjects than b → c`ν transitions :

• Search of the Higgs boson

• Search of New Physics (Supersymmetry ?)

• Precise study of CP violation in B mesons, as in Bs − Bs

• Look for photon polarization in rare decays b → sγ

However, there are some motivations :

• It is never too late to get new rigorous results on this subject

• BR(Λb → Λc`ν) ' 5% (Tevatron), dΓ
dw can be studied at LHC-b

• Exclusive (HQET) B → D(D∗)`ν ⇒ |Vcb| = (38.7± 1.1)× 10−3

Inclusive (OPE) B → Xc`ν ⇒ |Vcb| = (41.5± 0.7)× 10−3

Consistent within errors, but the situation is not satisfactory
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Exclusive determination of |Vcb|

dΓ(B→D∗`ν)
dw =

G2
F

48π3 (mB −mD∗)
2m3

D∗K (w , r)|Vcb|2|F∗(1)|2|ξ(w)|2

r = mD∗
mB

,w =
m2

B+m2
D−q

2

2mBmD
,w = 1→ q2

max = (mB −mD∗)
2

F∗(1) = ηA
(
1 + δ1/m2 + ...

)
= 0.924± 0.012± 0.019 (lattice QCD)

ξ(1) = 1, ξ′(1) = −ρ2

|Vcb| = (38.7± 0.7± 0.9)× 10−3 (HFAG 2007)

Great dispersion of data in the (|Vcb|, ρ2) plane

Inclusive determination |Vcb| = (41.7± 0.4± 0.6)× 10−3

[Buchmüller and Flächer (2005-2007), from Bigi et al., Bauer et al.]

mb = 4.59 GeV , mc = 1.14 GeV , µ2
G = 0.35 GeV 2, µ2

π = 0.40 GeV 2

Different hadronic uncertainties in inclusive vs. exclusive methods
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Operator Product Expansion

T = i
∫
d4xe−iq.x < B|T [J(x)J+(0)]|B > J = cΓb

T ∼
∑

X
|<X |J(0)|B>|2
mB−q0−EX

δ(pX + q)−
∑

X ′
|<X ′BB|J+(0)|B>|2
mB+q0−(EX ′+2mB)

δ(pX ′−q)

Direct channel virtuality V = mB − q0 − EX

Choose q0 such that ΛQCD � V � mB

Crossed channel denominator V + 2mD � V

Leading contribution to the OPE

T = i
∫
d4xe−iq.x < B|b(x)Γ+S free

c (x , 0)Γb(0)|B > + O(1/m2
c)

Varying independently V,mb,mc and equating residues∑
Xc
| < Xc |J(0)|B > |2 = < B|b Γ/v

′
c+1

2v ′c
0 Γb(0)|B >

/v ′c+1

2v ′c
0 : positive energy residue of c quark propagator
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Details of the calculations of the sum rules and bounds

• The excited states of arbitrary spin (Falk 1992)

• Calculation of the polynomial SL(wi ,wf ,wif ) (Le Yaouanc et al. 2002)

• Simple derivation of Bjorken and Uraltsev SR (Le Yaouanc et al. 2002)

• Generalizations for higher derivatives (Le Yaouanc et al. 2002)

• Proof of improved bound on the curvature (Le Yaouanc et al. 2003)

• The Isgur-Wise function in the BPS limit (Jugeau et al. 2006)

• Radiative corrections (Dorsten 2003)

• Phenomenology (Dorsten 2003)
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4× 4 matrices for states of arbitrary spin

L : orbital angular momentum of light clound of half-integer spin j

k = j − 1
2

• j = L + 1
2 , J = j + 1

2 Mµ1,...µk (v) = P+ε
µ1,...µk+1γµk+1

• j = L + 1
2 , J = j − 1

2 Mµ1,...µk (v) = −
√

2k+1
k+1 P+γ5ε

ν1,...νk

×
[
gµ1
ν1
...gµk

νk
− 1

k+1

[
γν1 (γµ1 − vµ1 )gµ2

ν2
...gµk

νk
+ gµ1

ν1
...g

µk−1
νk−1 γνk (γµk − vµk )

]]
• j = L− 1

2 , J = j + 1
2 Mµ1,...µk (v) = P+ε

µ1,...µk+1γ5γµk+1

• j = L− 1
2 , J = j − 1

2 Mµ1,...µk (v) =
√

2k+1
k+1 P+ε

ν1,...νk

×
[
gµ1
ν1
...gµk

νk
− 1

k+1

[
γν1 (γµ1 − vµ1 )gµ2

ν2
...gµk

νk
+ gµ1

ν1
...g

µk−1
νk−1 γνk (γµk − vµk )

]]

Luis Oliver Bjorken-like Sum Rules and the Lorentz Group



Sketch of the demonstration

Reduce to a three-dimensional problem at rest

v ′ = (1, 0), vi = (
√

1 + v2
i , vi ), vf = (

√
1 + v2

f , vf ) → T j1,...jL,i1...iL

Couple L angular momenta ~1 into total ~L

SL(v2
i , v

2
f , vi .vf ) =

∑
j1...jL

∑
k1...kL

vk1

f ...v
kL
f T k1,...kL,j1...jLv j1

i ...v
jL
i

=
2L(L!)2

(2L + 1)!
4π

M=L∑
M=−L

YM
L (vf )∗YM

L (vi ) =
2L(L!)2

(2L)!
|vi |L|vf |LPL(v̂i .v̂f )

SL(v2
i , v

2
f , vi .vf ) =

∑
06k6 L

2

(L!)2

(2L)!
(−1)k

(2L− 2k)!

k!(L− k)!(L− 2k)!
(v2

i )k(v2
f )k(vi .vf )L−2k

Covariant → v2
i = w2

i − 1, v2
f = w2

f − 1, vi .vf = wiwf − wif
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Improved bound on the curvature[
dp+qLVHadrons
dwp

if dw
q

]
wif =w=1

=
[
dp+qRV

OPE

dwp
if dw

q

]
wif =w=1

= 0 (p+q = 0,1,2)[
dp+qLAHadrons
dwp

if dw
q

]
wif =w=1

=
[
dp+qRA

OPE

dwp
if dw

q

]
wif =w=1

= 0 (p+q = 0,1,2,3)

4 linearly independent equations for the curvature σ2 = ξ′′(1)

ρ2 − 5
4σ

2 +
∑

n[τ
(1)(n)
3/2 (1)]2 = 0 → σ2 > 5

4ρ
2 (see above)
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Shape of the Isgur-Wise function in a limit of HQET

Matrix elements of dimension 5 operators in HQET

µ2
π = − 1

2mB
< B|hv (iD)2hv |B > kinetic operator

µ2
G = 1

2mB
< B|gs2 hvσαβG

αβhv |B > chromomagnetic operator

Sum Rules in terms of 1
2

− → 1
2

+
, 3

2

+
IW functions τ

(n)
j and level

spacings ∆E
(n)
j (Bigi et al., 1995) :

µ2
π = 6

∑
n [∆E

(n)
3/2]2[τ

(n)
3/2(1)]2 + 3

∑
n [∆E

(n)
1/2]2[τ

(n)
1/2(1)]2

µ2
G = 6

∑
n [∆E

(n)
3/2]2[τ

(n)
3/2(1)]2 − 6

∑
n [∆E

(n)
1/2]2[τ

(n)
1/2(1)]2

Inequality µ2
π > µ2

G (expt. µ2
π
∼= 0.40 GeV 2, µ2

G
∼= 0.35 GeV 2)
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The so-called BPS limit of HQET

µ2
π = µ2

G → τ
(n)
1/2(1) = 0 (Uraltsev, 2001)

BPS with two derivatives → τ
(2)(n)
3/2 (1) = 0 → σ2 = 15

16

To generalize need to demonstrate τ
(L)(n)
L−1/2(1) = 0

By induction : τ
(1)(n)
1/2 (1) = τ

(2)(n)
3/2 (1) = 0, assume τ

(L−1)(n)
L−3/2 (1) = 0

Vector and Axial SR → τ
(L)(n)
L−1/2(1) = 0 → (−1)Lξ(L)(1) = (2L+1)!!

22L

Therefore BPS implies the explicit form ξ(w) =
(

2
w+1

)3/2

Defined limit of HQET → explicit form for the elastic IW function

This limit has a simple group theoretical interpretation
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Radiative corrections

Two types of radiative corrections : (1) within HQET
(2) Wilson coefficients to make the matching with QCD

Modified sum rule (Dorsten 2003)

µ-dependence in OPE side and cut-off ∆ in hadronic sum∑
Xc

W∆(EM − EXc ) < B f |Jf (0)|Xc >< Xc |Ji (0)|B i >

= 2ξ(wif ) [1 + αs(µ)F (wi ,wf ,wif )]Tr
[
Pf +/v f (γ5)P ′+/v i (γ5)Pi+

]
Universal function F (wi ,wf ,wif )→ F (1,w ,w) = F (w , 1,w) = 0

Modified bound due to radiative corrections within HQET

σ2(µ) > 3
5

[
ρ2(µ)

]2
+ 4

5ρ
2(µ)

[
1 + 20αs(µ)

27π

]
− 148αs(µ)

675π (∆ = 2µ)

Curvature of physical axial form factor σ2
A1
> 0.94− 0.07p − 0.2np
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The case of baryons Λb(vi )→ Λ
(n)
c (v ′)→ Λb(vf )

Λb : (jP , JP) =
(

0+, 1
2

+
)

Λ
(n)
c : tower (jP , JP), J = j , j = L,P = (−1)L

Sum rule

ξΛ(wif ) =
∑

n

∑
L≥0 τ

(n)
L (wi )

∗τ
(n)
L (wf )∑

0≤k≤L/2 CL,k (w2
i − 1)k(w2

f − 1)k(wiwf − wif )L−2k

IW functions τL(w) : 0+ → LP ,P = (−1)L

One finds the constraints on the derivatives :

ρ2
Λ = −ξ′Λ(1) ≥ 0 ξ′′Λ(1) ≥ 3

5 [ρ2
Λ + (ρ2

Λ)2]
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Supplementary series χ = (s, ρ)

ρ ∈ R (0 < ρ < 1)

Hilbert space Hs,ρ

< φ′|φ > =
∫
φ′(z1) |z1 − z2|2ρ−2 φ(z2) d2z1d

2z2

(non-standard scalar product)

Unitary operator Us,ρ(Λ)

(Us,ρ(Λ)φ)(z) = |α− γz |−2ρ−2 φ
(
δz−β
α−γz

)
Trivial representation χ = t

Hilbert space Ht = C

< φ′|φ > = φ′(z)φ(z)

Unitary operator Ut(Λ) = 1
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Decomposition under the rotation group

Need restriction to SU(2) of unitary representations χ of SL(2,C )

For a χ there is an orthonormal basis φχj ,M of Hχ adapted to SU(2)

Particularizing to j = 0 : all types of representations contribute

φp,0,ρ0,0 (z) = 1√
π

(1 + |z |2)iρ−1 (χ = (p, 0, ρ), ρ ≥ 0)

φs,ρ0,0(z) =
√
ρ
π (1 + |z |2)−ρ−1 (χ = (s, ρ), 0 < ρ < 1)

φt0,0(z) = 1 (χ = t)

For j 6= 0 enters also the matrix element

D j
M′,M(R) = < j ,M ′|Uj(R)|j ,M > R ∈ SU(2)
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Irreducible IW functions in the case j = 0

Need ξχ(w) = < φχ0,0|Uχ(Λτ )φχ0,0 > (Λτ : boost, w = ch(τ))

Transformed elements Uχ(Λτ )φχ0,0(
Up,0,ρ(Λτ )φp,0,ρ0,0

)
(z) = 1√

π
(eτ + e−τ |z|2)iρ−1

(
Us,ρ(Λτ )φs,ρ0,0

)
(z) =

√
ρ√
π

(eτ + e−τ |z|2)−ρ−1

Ut(Λτ )φt0,0 = 1

Using the scalar products for each class of representations

ξp,0,ρ(w) = sin(ρτ)
ρ sh(τ) (ρ ≥ 0)

ξs,ρ(w) = sh(ρτ)
ρ sh(τ) (0 < ρ < 1)

ξt(w) = 1
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Integral formula for the IW function in the case j = 0

ξ(w) =
∫

[0,∞[
sin(ρτ)
ρ sh(τ) dνp(ρ) +

∫
]0,1[

sh(ρτ)
ρ sh(τ) dνs(ρ) + νt

νp and νs are positive measures and νt a ≥ 0 real number∫
[0,∞[ dνp(ρ) +

∫
]0,1[ dνs(ρ) + νt = 1

One-parameter family ξx(w) = sh(τ
√

1−x)

sh(τ)
√

1−x = sin(τ
√
x−1)

sh(τ)
√
x−1

covers all irreducible representations → simplifies integral formula

ξ(w) =
∫

[0,∞[ ξx(w) dν(x) (ν positive measure
∫

[0,∞[ dν(x) = 1)

→ a transparent deduction of constraints on the derivatives ξ(n)(1)
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Integral formula for the IW function in the case j = 0

ξ(w) =
∫

[0,∞[
sin(ρτ)
ρ sh(τ) dνp(ρ) +

∫
]0,1[

sh(ρτ)
ρ sh(τ) dνs(ρ) + νt

νp and νs are positive measures and νt a ≥ 0 real number∫
[0,∞[ dνp(ρ) +

∫
]0,1[ dνs(ρ) + νt = 1

One-parameter family ξx(w) = sh(τ
√

1−x)

sh(τ)
√

1−x = sin(τ
√
x−1)

sh(τ)
√
x−1

covers all irreducible representations → simplifies integral formula

ξ(w) =
∫

[0,∞[ ξx(w) dν(x) (ν positive measure
∫

[0,∞[ dν(x) = 1)

→ a transparent deduction of constraints on the derivatives ξ(n)(1)
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Example 3

From the integral representation

ξ(w) =
∫

[0,∞[ ξx(w) dν(x) (ν positive measure
∫

[0,∞[ dν(x) = 1)

and ξx(w) = sh(τ
√

1−x)

sh(τ)
√

1−x = sin(τ
√
x−1)

sh(τ)
√
x−1

if the curvature saturates its lower bound ξ′′(1) = 3
5ρ

2
Λ(1 + ρ2

Λ)

ξ(w) =
sh(τ
√

1−3c)
sh(τ)

√
1−3c

=
sin(τ

√
3c−1)

sh(τ)
√

3c−1

valid for any slope c = ρ2
Λ > 0

i.e. the lower bound predicted by HQET (Isgur et al.)

This is an irreducible Isgur-Wise function since only
one irreducible representation contributes to the integral formula
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One-parameter functions satisfying the Lorentz constraints

• Isgur-Wise function for baryons jP = 0+ Λb → Λc`ν

ξΛ(w) =
(

2
w+1

)2ρ2
Λ

with ρ2
Λ ≥

1
4

Rigorous lower bound (Isgur et al. SR) : ρ2
Λ ≥ 0

• Isgur-Wise function for mesons jP = 1
2

−
B → D(D∗)`ν

One can apply the method to mesons (spin complications)

ξ(w) =
(

2
w+1

)2ρ2

with ρ2 ≥ 3
4

Rigorous lower bound (Bjorken + Uraltsev SR) : ρ2 ≥ 3
4

Clean group theoretical interpretation : only one irreducible
representation contributes to the integral formula
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BPS limit of HQET

µ2
π = µ2

G → τ
(n)
1/2(1) = 0 (Uraltsev, 2001)

Limit of HQET (~σ.i ~D)hv |B > = 0 (small components in B → 0)

Covariant form γ5i/Dhv |B > = 0 (eq. of motion (iD.v)hv = 0)

γ5i/Dγ5i/D = −
[
(iD)2 + gs

2 σαβG
αβ
]
→ µ2

π = µ2
G

Leading and subleading matrix elements
(

1
2

−
, 0−

)
→
(

1
2

+
, 0+

)
< D(0+)(v ′)|h(c)

v ′ Γh
(b)
v |B(v) > = 2τ1/2(w)Tr

[
P ′+ΓP+(−γ5)

]
< D(0+)(v ′)|h(c)

v ′ Γi
−→
Dλh

(b)
v |B(v) > = Tr

[
S

(b)
λ P ′+ΓP+(−γ5)

]
< D(0+)(v ′)|h(c)

v ′ i
←−
DλΓh

(b)
v |B(v) > = Tr

[
S

(c)
λ P ′+ΓP+(−γ5)

]
S

(Q)
λ = ζ

(Q)
1 vλ + ζ

(Q)
2 v ′λ + ζ

(Q)
3 γλ
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Shape of the Isgur-Wise function in the BPS limit of HQET

Eq. of motion + translational invariance : ζ
(b)(n)
3 (1) = −∆E

(n)
1/2τ

(1)(n)
1/2 (1)

i∂λ < D(0+)(v ′)|h(c)
v′ Γh

(b)
v |B(v) > = (Λvλ − Λ

∗
v ′λ) 2τ1/2(w)Tr [P′+ΓP+(−γ5)]

BPS < D(0+)(v ′)|h(c)
v ′ Γi
−→
Dλh

(b)
v |B(v) > = 0 → ζ

(b)(n)
3 (1) = 0

→ τ
(1)(n)
1/2 (1) = 0 → ρ2 = 3

4 (from Bjorken + Uraltsev SR)

BPS with two derivatives → τ
(2)(n)
3/2 (1) = 0 → σ2 = 15

16

To generalize need to demonstrate τ
(L)(n)
L−1/2(1) = 0

By induction : τ
(1)(n)
1/2 (1) = τ

(2)(n)
3/2 (1) = 0, assume τ

(L−1)(n)
L−3/2 (1) = 0

Vector and Axial SR → τ
(L)(n)
L−1/2(1) = 0 → (−1)Lξ(L)(1) = (2L+1)!!

22L

Therefore BPS implies the explicit form ξ(w) =
(

2
w+1

)3/2
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Example 3 (only the principal series contributes)

ξ(w) = 1

[1+ c
2

(w−1)]
2 = 8

c2

∫∞
0

ρ2

sh(πρ)
sh(γρ)
sh(γ)

sin(ρτ)
ρ sh(τ) dρ

(cosγ = 2
c − 1) valid for any slope c = ρ2

Λ > 1

Example 4

From the integral representation
if the curvature saturates its lower bound

ξ(w) =
sh(τ
√

1−3c)
sh(τ)

√
1−3c

=
sin(τ

√
3c−1)

sh(τ)
√

3c−1

valid for any slope c = ρ2
Λ > 0

i.e. the lower bound predicted by HQET (Isgur et al.)

This is an irreducible Isgur-Wise function :
One irreducible representation contributes to the integral formula
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The Isgur-Wise function is a function of positive type

For any N and any complex numbers ai and velocities vi∑N
i ,j=1 a

∗
i aj ξ(vi .vj) ≥ 0 or, in a covariant form∫

d3~v
v0

d3~v ′

v ′0
ψ(v ′)∗ ξ(v .v ′) ψ(v) ≥ 0 for any ψ(v)

From the Sum Rule (wi = vi .v
′,wj = vj .v

′,wij = vi .vj)

ξ(wij) =
∑

n

∑
L τ

(n)
L (wi )

∗τ
(n)
L (wj)∑

0≤k≤L/2 CL,k (w2
i − 1)k(w2

j − 1)k(wiwj − wij)
L−2k

Legendre polynomial. Use rest frame v ′ = (1, 0, 0, 0)∑N
i ,j=1 a

∗
i aj ξ(vi .vj) = 4π

∑N
i ,j=1

∑
n

∑
L

2L(L!)2

(2L+1)!

∑m=+L
m=−L[

ai τ
(n)
L

(√
1 + ~v 2

i

)
Ym
L (~vi )

]∗ [
aj τ

(n)
L

(√
1 + ~v 2

j

)
Ym
L (~vj)

]
≥ 0
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One example : application to the exponential form

ξ(w) = exp [−c(w − 1)]

I =
∫

d3~v
v0

d3~v ′

v ′0
φ(|~v ′|)∗ exp [−c((v .v ′)− 1)] φ(|~v |)

= 16π3 ec

c

∫∞
−∞ Kiρ(c) |f̃ (ρ)|2 dρ

f (η) = sh(η) φ(sh(η))
Kν(z) = 1

2

∫∞
−∞ exp[−z ch(t)] eνt dt Macdonald function

Whatever the slope c > 0, Kiρ(c) takes negative values

Asymptotic formula

Kiρ(c) ∼
√

2π
ρ e−ρπ/2 cos

[
ρ
(
log
(

2ρ
c

)
− 1
)
− π

4

]
(ρ >> c)

Therefore there a function ψ(v) for which the integral I < 0

The exponential form is inconsistent with the Sum Rules
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Sum Rule and Lorentz group approaches are equivalent

• The Lorentz group approach implies that ξ(w) is of positive type

ξ(w) = < U(Bv ′)ψ0|U(Bv )ψ0 > (Bv : boost v0 → v)∑N
i ,j=1 a

∗
i aj ξ(vi .vj) = ‖

∑N
j=1 ajU(Bvj )ψ0‖2 ≥ 0

• The Sum Rule approach implies the Lorentz group approach

A function f (Λ) on the group SL(2,C ) is of positive type when∑N
i ,j=1 a

∗
i aj f (Λ−1

i Λj) ≥ 0 (N ≥ 1, complex ai , Λi ∈ SL(2,C ))

Theorem (Dixmier) : for any function f (Λ) of positive type exists a
unitary representation U(Λ) of SL(2,C ) in a Hilbert space H and
an element φ0 ∈ H → f (Λ) = < φ0|U(Λ)φ0 >

Definition of f (Λ−1
i Λj) = ξ(vi .vj) = ξ(v0.Λ

−1
i Λjv0)
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Lorentz group in our approach vs. Poincaré group

One can ask the question about which is the relation between the
Lorentz group used in our approach and the Poincaré group

• Näımark : we use the Lorentz group (no translations),
more precisely the orthochronous proper Lorentz group,
more precisely its connected recovering to get half-integer spin
(parity must also be included)

• Wigner : Poincaré group (translations included)
→ classification of massive and massless particles

• These are two quite different kinds of problems
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