# Bjorken-like Sum Rules and the Lorentz Group 

Luis Oliver<br>Laboratoire de Physique Théorique, Orsay

## Workshop

## Decay $B \rightarrow D^{* *}$ and related issues

Paris, 26-28 November 2012

On work by A. Le Yaouanc, L. Oliver and J.-C. Raynal

## Bjorken-like Sum Rules and the Lorentz Group

Well-known that the transitions $H_{b} \rightarrow H_{c} \ell \nu$ like
Meson transitions $\quad \bar{B}_{d} \rightarrow D \ell \nu \quad \bar{B}_{d} \rightarrow D^{*} \ell \nu$
Baryon transition $\quad \Lambda_{b} \rightarrow \Lambda_{c} \ell \nu$
are related to the exclusive determination of $\left|V_{c b}\right|$
Many form factors but Heavy Quark Symmetry $\operatorname{SU}\left(2 N_{f}\right)$
$\rightarrow$ form factors given by a single function $\xi(w)$ (IW function)
Tension between inclusive and exclusive determinations of $\left|V_{c b}\right|$
But my purpose is only to expose new interesting theoretical results on the properties of the Heavy Quark Effective Theory of QCD

## Heavy Quark Symmetry

Elastic meson transitions $\quad \bar{B}_{d} \rightarrow D \ell \nu \quad \bar{B}_{d} \rightarrow D^{*} \ell \nu$
Light cloud $\frac{1}{2}^{-}$combines with heavy quark spin $s_{Q}=\frac{1}{2}$
$\rightarrow \quad J^{P}=0^{-}(D)$ and $1^{-}\left(D^{*}\right)$ ground states
By spin-flavor Heavy Quark Symmetry $S U\left(2 N_{f}\right)$ ( $N_{f}$ heavy flavors) six form factors $\left(f_{0}, f_{+}\right.$for $\left.\bar{B} \rightarrow D\right),\left(V, A_{0}, A_{1}, A_{2}\right.$ for $\left.\bar{B} \rightarrow D^{*}\right)$ reduce to a single Isgur-Wise function $\quad \xi(w) \quad\left(w=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{D}}\right)$ for the light cloud ( $L=0, s_{q}=\frac{1}{2}$ ) transition $\frac{1}{2}^{-} \rightarrow \frac{1}{2}^{-}$

Excited meson transitions $\quad \bar{B}_{d} \rightarrow D^{* *} \ell \nu \quad\left(L=1, D^{* *}\right.$ of $\left.P=+\right)$
$L=1, s_{q}=\frac{1}{2}$ : light cloud transitions $\frac{1}{2}^{-} \rightarrow \frac{1}{2}^{+}$and $\frac{1}{2}^{-} \rightarrow \frac{3}{2}^{+}$ two IW functions $\tau_{1 / 2}(w), \tau_{3 / 2}(w) \quad D^{* *}: 0_{1 / 2}^{+}, 1_{1 / 2}^{+}, 1_{3 / 2}^{+}, 2_{3 / 2}^{+}$

## Bjorken and Uraltsev Sum Rules

Bjorken SR $\quad \rho^{2}=\frac{1}{4}+\sum_{n}\left[\left|\tau_{1 / 2}^{(n)}(1)\right|^{2}+2\left|\tau_{3 / 2}^{(n)}(1)\right|^{2}\right] \quad \rightarrow \quad \rho^{2} \geqslant \frac{1}{4}$
Uraltsev SR

$$
\sum_{n}\left[\left|\tau_{3 / 2}^{(n)}(1)\right|^{2}-\left|\tau_{1 / 2}^{(n)}(1)\right|^{2}\right]=\frac{1}{4}
$$

Bjorken (1990-1991) + Uraltsev (2001) $\quad \rightarrow \quad \rho^{2} \geqslant \frac{3}{4}$

Bound obtained in Bakamjian-Thomas quark models (Le Yaouanc et al. 1996)

- covariant for $m_{Q} \rightarrow \infty$
- explicit Isgur-Wise scaling
- satisfying Bjorken and Uraltsev SR


## Isgur-Wise functions and Sum Rules in HQET

(Bjorken; Isgur and Wise; Uraltsev; Le Yaouanc et al.)
Consider the non-forward amplitude
$\bar{B}\left(v_{i}\right) \rightarrow D^{(n)}\left(v^{\prime}\right) \rightarrow \bar{B}\left(v_{f}\right) \quad\left(w_{i}=v_{i} \cdot v^{\prime}, w_{f}=v_{f} \cdot v^{\prime}, w_{i f}=v_{i} \cdot v_{f}\right)$
SR obtained from the OPE
$L_{\text {Hadrons }}\left(w_{i}, w_{f}, w_{i f}\right)=R_{\text {OPE }}\left(w_{i}, w_{f}, w_{i f}\right)$
$L_{\text {Hadrons }}:$ sum over $D^{(n)}$ states $\quad R_{\text {OPE }}:$ OPE counterpart
$\sum_{D^{(n)}}<\bar{B}_{f}\left(v_{f}\right)\left|\Gamma_{f}\right| D^{(n)}\left(v^{\prime}\right)><\bar{D}^{(n)}\left(v^{\prime}\right)\left|\Gamma_{i}\right| B_{i}\left(v_{i}\right)>\xi^{(n)}\left(w_{i}\right) \xi^{(n)}\left(w_{f}\right)$

+ Other excited states and IW functions $\left.=-2 \xi\left(w_{i f}\right)<\bar{B}_{f}\left(v_{f}\right)\left|\Gamma_{f} P_{+}^{\prime} \Gamma_{i}\right| B_{i}\left(v_{i}\right)\right\rangle$
$P_{+}^{\prime}=\frac{1+\psi^{\prime}}{2}$ : positive energy projector on the intermediate $c$

Light cloud angular momentum $j$ and bound state spin $J$
$\bar{B}$ : pseudoscalar ground state $\left(j^{P}, J^{P}\right)=\left(\frac{1}{2}^{-}, 0^{-}\right)$
$D^{(n)}:$ tower $\left(j^{P}, J^{P}\right), J=j \pm \frac{1}{2}, j=L \pm \frac{1}{2}, P=(-1)^{L+1}$ (Falk, 1992)
Heavy quark currents : $\quad \bar{h}_{v^{\prime}} \Gamma_{i} h_{v_{i}} \quad \bar{h}_{v_{f}} \Gamma_{f} h_{v^{\prime}}$
Domain of the variables $\left(w_{i}, w_{f}, w_{i f}\right)$ :
$w_{i} \geq 1 \quad w_{f} \geq 1$
$w_{i} w_{f}-\sqrt{\left(w_{i}^{2}-1\right)\left(w_{f}^{2}-1\right)} \leq w_{i f} \leq w_{i} w_{f}+\sqrt{\left(w_{i}^{2}-1\right)\left(w_{f}^{2}-1\right)}$

For $w_{i}=w_{f}=w$, the domain becomes :
$w \geq 1 \quad 1 \leq w_{i f} \leq 2 w^{2}-1$

$$
\begin{aligned}
& \Gamma_{i}=\psi_{i} \quad \Gamma_{f}=\psi_{f} \quad \rightarrow \quad \text { Vector } S R \\
& (w+1)^{2} \sum_{L \geq 0} \frac{L+1}{2 L+1} S_{L}\left(w, w_{i f}\right) \sum_{n}\left[\tau_{L+1 / 2}^{(L)(n)}(w)\right]^{2} \\
& +\sum_{L \geq 1} S_{L}\left(w, w_{i f}\right) \sum_{n}\left[\tau_{L-1 / 2}^{(L)(n)}(w)\right]^{2}=\left(1+2 w+w_{i f}\right) \xi\left(w_{i f}\right) \\
& \Gamma_{i}=\psi_{i} \gamma_{5} \quad \Gamma_{f}=\psi_{f} \gamma_{5} \quad \rightarrow \quad \text { Axial SR } \\
& \sum_{L \geq 0} S_{L+1}\left(w, w_{i f}\right) \sum_{n}\left[\tau_{L+1 / 2}^{(L)(n)}(w)\right]^{2} \\
& +(w-1)^{2} \sum_{L \geq 1} \frac{L}{2 L-1} S_{L-1}\left(w, w_{i f}\right) \sum_{n}\left[\tau_{L-1 / 2}^{(L)(n)}(w)\right]^{2} \\
& =-\left(1-2 w+w_{i f}\right) \xi\left(w_{i f}\right)
\end{aligned}
$$

IW functions $\tau_{L \pm 1 / 2}^{(L)(n)}(w): \frac{1}{2}^{-} \rightarrow\left(L \pm \frac{1}{2}\right)^{P}, P=(-1)^{L+1}$
$S_{L}\left(w, w_{\text {if }}\right)$ is a Legendre polynomial :
$S_{L}\left(w, w_{\text {if }}\right)=\sum_{0 \leq k \leq L / 2} C_{L, k}\left(w^{2}-1\right)^{2 k}\left(w^{2}-w_{i f}\right)^{L-2 k}$
$C_{L, k}=(-1)^{k} \frac{(L!)^{2}}{(2 L)!} \frac{(2 L-2 k)!}{k!(L-k)!(L-2 k)!}$
Differentiating the Sum Rules

$$
\left[\frac{d^{p+q}\left(L_{\text {Hadrons }}-R_{\text {OPE }}\right)}{d w_{i f}^{i f} d w^{q}}\right]_{w_{i f}=w=1}=0
$$

(going to the corner of the domain $w \rightarrow 1, w_{\text {if }} \rightarrow 1$ ) one finds constraints on the derivatives $\xi^{(n)}(1)$, in particular

$$
\rho^{2}=-\xi^{\prime}(1) \geq \frac{3}{4} \quad \xi^{\prime \prime}(1) \geq \frac{1}{5}\left[4 \rho^{2}+3\left(\rho^{2}\right)^{2}\right]
$$

Non-trivial inequalities
Non-forward amplitude (Uraltsev) $\bar{B}\left(v_{i}\right) \rightarrow D^{(n)}\left(v^{\prime}\right) \rightarrow \bar{B}\left(v_{f}\right)$

## The Legendre polynomial $S_{L}\left(w_{i}, w_{f}, w_{i f}\right)$

$S_{L}\left(w_{i}, w_{f}, w_{i f}\right)=v_{f \nu_{1}} \ldots v_{f \nu_{L}} T^{v_{f \nu_{1}} \ldots v_{f \nu_{L}}, v_{i \mu_{1}} \ldots v_{i \mu_{L}}} v_{i \mu_{1}} \ldots v_{i \mu_{L}}$
Projector on polarization tensor of integer spin $L$
$T^{v_{f \nu_{1}} \ldots v_{f \nu_{L}}, v_{i \mu_{1}} \ldots v_{i \mu_{L}}}=\sum_{\lambda} \epsilon^{\prime(\lambda) * \nu_{1} \ldots \nu_{L}} \epsilon^{\prime}(\lambda) \mu_{1} \ldots \mu_{L} \quad$ (depends on $v^{\prime}$ )
Polarization tensor $\epsilon^{\prime(\lambda) \mu_{1} \ldots \mu_{L}}$ is symmetric, traceless and transverse
$g_{\mu_{i} \mu_{j}} \epsilon^{\prime(\lambda) \mu_{1} \ldots \mu_{L}}=v_{\mu_{i}}^{\prime} \epsilon^{\prime(\lambda) \mu_{1} \ldots \mu_{L}}=0 \quad$ Examples of projector:
$L=1 \quad T^{\mu \nu}=-g^{\mu \nu}+v^{\prime \mu} v^{\nu}$
$L=2 \quad T^{\mu \nu, \rho \sigma}=\frac{1}{6}\left[-2 g^{\mu \nu} g^{\rho \sigma}+3\left(g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)\right.$ $+2\left(g^{\mu \nu} v^{\prime \rho} v^{\prime \sigma}+g^{\rho \sigma} v^{\prime \mu} v^{\prime \nu}\right)+4 v^{\prime \mu} v^{\prime \nu} v^{\prime \rho} v^{\prime \sigma}$ $\left.-3\left(g^{\mu \rho} v^{\prime \nu} v^{\prime \sigma}+g^{\nu \sigma} v^{\prime \mu} v^{\prime \rho}+g^{\nu \rho} v^{\prime \mu} v^{\prime \sigma}+g^{\mu \sigma} v^{\prime \nu} v^{\prime \rho}\right)\right]$
$S_{L}\left(w_{i}, w_{f}, w_{i f}\right)=\sum_{0 \leq k \leq L / 2} C_{L, k}\left(w_{i}^{2}-1\right)^{k}\left(w_{f}^{2}-1\right)^{k}\left(w_{i} w_{f}-w_{i f}\right)^{L-2 k}$
$C_{L, k}=(-1)^{k} \frac{(L!)^{2}}{(2 L)!} \frac{(2 L-2 k)!}{k!(L-k)!(L-2 k)!}$

## Derivation of sum rules and inequalities

Differentiating the Sum Rule $\quad L_{\text {Hadrons }}\left(w, w_{i f}\right)=R_{\text {OPE }}\left(w, w_{i f}\right)$

$$
\left(\frac{d^{p+q} L_{\text {Hadrons }}}{d w_{i f}^{p} d w^{q}}\right)_{w_{i f}=w=1}=\left(\frac{d^{p+q} R_{O P E}}{d w_{i f}^{p} d w^{q}}\right)_{w_{\text {if }}=w=1}
$$

Choosing the currents
$\xi^{(L)}(1)=\frac{1}{4}(-1)^{L} L!\sum_{n}\left[\frac{L+1}{2 L+1} 4\left[\tau_{L+1 / 2}^{(L)(n)}(1)\right]^{2}+\left[\tau_{L-1 / 2}^{(L-1)(n)}(1)\right]^{2}+\left[\tau_{L-1 / 2}^{(L)(n)}(1)\right]^{2}\right.$
$L=1 \rightarrow$ Bjorken SR $\quad \rho^{2}=\frac{1}{4}+\sum_{n}\left[\left|\tau_{1 / 2}^{(n)}(1)\right|^{2}+2\left|\tau_{3 / 2}^{(n)}(1)\right|^{2}\right]$
$\sum_{n}\left[\frac{L}{2 L+1}\left[\tau_{L+1 / 2}^{(L)(n)}(1)\right]^{2}-\frac{1}{4}\left[\tau_{L-1 / 2}^{(L)(n)}(1)\right]^{2}\right]=\sum_{n} \frac{1}{4}\left[\tau_{L-1 / 2}^{(L-1)(n)}(1)\right]^{2}$
$L=1 \rightarrow$ Uraltsev SR $\quad \sum_{n}\left[\left|\tau_{3 / 2}^{(n)}(1)\right|^{2}-\left|\tau_{1 / 2}^{(n)}(1)\right|^{2}\right]=\frac{1}{4}$

## Inequalities for derivatives

Slope $\quad \rho^{2}=-\xi^{\prime}(1)=\frac{3}{4}\left[1+\left[\tau_{1 / 2}^{1)(n)}(1)\right]^{2}\right] \rightarrow \rho^{2} \geqslant \frac{3}{4}$
Curvature

$$
\sigma^{2}=\xi^{\prime \prime}(1)=\frac{5}{4} \sum_{n}\left[\left[\tau_{3 / 2}^{(1)(n)}(1)\right]^{2}+\left[\tau_{3 / 2}^{(2)(n)}(1)\right]^{2}\right]
$$

$\geqslant \frac{5}{4} \sum_{n}\left[\tau_{3 / 2}^{(1)(n)}(1)\right]^{2}=\frac{5}{4} \rho^{2} \geqslant \frac{15}{16}$

L-th derivative $(-1)^{L} \xi^{(L)}(1) \geqslant \frac{2 L+1}{4}(-1)^{L-1} \xi^{(L-1)}(1) \geqslant \frac{(2 L+1)!!}{2^{2 L}}$
$\frac{4}{3} \rho^{2}+\left(\rho^{2}\right)^{2}-\frac{5}{3} \sigma^{2}+\sum_{n \neq 0}\left[\xi^{\prime(n)}(1)\right]^{2}=0 \quad\left(\frac{1}{2}^{-}\right.$excited states $)$
$\rightarrow \quad \sigma^{2} \geqslant \frac{1}{5}\left[4 \rho^{2}+3\left(\rho^{2}\right)^{2}\right] \quad$ new improved bound
term $\frac{3}{5}\left(\rho^{2}\right)^{2}$ dominant in non-relativistic limit for the light quark

## The so-called BPS limit of HQET

$\mu_{\pi}^{2}=\mu_{G}^{2} \quad \rightarrow \quad-\xi^{\prime}(1)=\rho^{2}=\frac{3}{4} \quad$ (Uraltsev, 2001)
Using the Sum Rules and by induction $\rightarrow(-1)^{L} \xi^{(L)}(1)=\frac{(2 L+1)!!}{2^{2 L}}$

Therefore BPS implies the explicit form

$$
\xi(w)=\left(\frac{2}{w+1}\right)^{3 / 2}
$$

Defined limit of HQET $\rightarrow$ explicit form for the elastic IW function

This limit has a simple group theoretical interpretation

## Isgur-Wise functions and the Lorentz group

Matrix element of a current between heavy hadrons factorizes into a trivial heavy quark current matrix element and a light cloud overlap (that contains the long distance physics)
$<H^{\prime}\left(v^{\prime}\right)\left|J^{Q^{\prime} Q}(q)\right| H(v)>=$
$<Q^{\prime}\left(v^{\prime}\right), \pm \frac{1}{2}\left|J^{Q^{\prime} Q}(q)\right| Q(v), \pm \frac{1}{2}><v^{\prime}, j^{\prime}, M^{\prime} \mid v, j, M>$
The light cloud follows the heavy quark with the same four-velocity

Isgur-Wise functions: light cloud overlaps $\xi\left(v . v^{\prime}\right)=\left\langle v^{\prime} \mid v\right\rangle$
Factorization valid only in absence of hard radiative corrections

## Light cloud Hilbert space

Sensible hypothesis: light cloud states form a Hilbert space on which acts a unitary representation of the Lorentz group
$\Lambda \rightarrow U(\Lambda) \quad U(\Lambda)|v, j, \epsilon>=| \Lambda v, j, \Lambda \epsilon>$

$$
\left|v, j, \epsilon>=\sum_{M}\left(\Lambda^{-1} \epsilon\right)_{M} U(\Lambda)\right| v_{0}, j, M>
$$

$\Lambda v_{0}=v \quad v_{0}=(1,0,0,0) \quad \Lambda^{-1} \epsilon:$ polarization vector at rest
Defines in Hilbert space $\mathcal{H}$ of unitary representation of $S L(2, C)$ the states $\mid v, j, \epsilon>$ whose scalar products define the IW functions in terms of $\mid v_{0}, j, M>(S U(2)$ multiplets in $S U(2) \subset S L(2, C))$

## Illustration with the simpler case of baryons with $\mathbf{j}=\mathbf{0}$

Baryons $\Lambda_{b}(v), \Lambda_{c}(v)\left(S_{q q}=0, L=0\right.$ in quark model language $)$
The Isgur-Wise function writes
$\xi\left(v . v^{\prime}\right)=<U\left(B_{v^{\prime}}\right) \phi_{0} \mid U\left(B_{v}\right) \phi_{0}>$
$\mid \phi_{0}>$ represents the light cloud at rest and $B_{v}, B_{v^{\prime}}$ are boosts
$\xi(w)=<\phi_{0} \mid U(\Lambda) \phi_{0}>$

$$
\Lambda v_{0}=v
$$

$$
v^{0}=w
$$

$\Lambda$ is for instance the boost along $O z$
$\Lambda_{\tau}=\left(\begin{array}{cc}e^{\tau / 2} & 0 \\ 0 & e^{-\tau / 2}\end{array}\right)$

$$
w=\operatorname{ch}(\tau)
$$

Method completely general, for any $j$ and any transition $j \rightarrow j^{\prime}$

## Decomposition into irreducible representations

The unitary representation $U(\Lambda)$ is in general reducible
Decompose it into irreducible representations $U_{\chi}(\Lambda)$
Hilbert space $\mathcal{H}$ made of functions

$$
\psi: \chi \in X \rightarrow \psi_{\chi} \in \mathcal{H}_{\chi}
$$

Scalar product in $\mathcal{H}$
$<\psi^{\prime}\left|\psi>=\int_{X}<\psi_{\chi}^{\prime}\right| \psi_{\chi}>d \mu(\chi)$
$\chi \in X$ : irreducible unitary representation
$d \mu(\chi)$ : a positive measure
$(U(\Lambda) \psi)_{\chi}=U_{\chi}(\Lambda) \psi_{\chi} \quad \psi_{\chi} \in \mathcal{H}_{\chi}$
$\mathcal{H}_{\chi}$ : Hilbert space of $\chi$ on which acts $U_{\chi}(\Lambda)$

## Integral formula for the Isgur-Wise function

Notation

$$
\xi_{\chi}(w)=<\phi_{0, \chi} \mid U_{\chi}(\Lambda) \phi_{0, \chi}>
$$

irreducible Isgur-Wise function corresponding to irreducible $\chi$

Isgur-Wise function

$$
\xi(w)=\int_{X_{0}} \xi_{\chi}(w) d \nu(\chi)
$$

positive normalized measure $d \nu(\chi) \quad \int_{X_{0}} d \nu(\chi)=1$
$X_{0} \subset X$ irreducible representations of $S L(2, C)$
containing a non-zero $S U(2)$ scalar subspace ( $j=0$ case)
Irreducible IW function $\xi_{\chi}(w)$ when $\nu$ is a $\delta$ function

Irreducible unitary representations of the Lorentz group
Naïmark (1962)
Principal series $\quad \chi=(n, \rho)$
$n \in Z$ and $\rho \in R$

$$
(n=0, \rho \geq 0 ; n>0, \rho \in R)
$$

Hilbert space $\mathcal{H}_{n, \rho}$
$<\phi^{\prime} \mid \phi>=\int \overline{\phi^{\prime}(z)} \phi(z) d^{2} z \quad d^{2} z=d(\operatorname{Rez}) d(\operatorname{lmz})$
Unitary operator $U_{n, \rho}(\Lambda)$
$\left(U_{n, \rho}(\Lambda) \phi\right)(z)=\left(\frac{\alpha-\gamma z}{|\alpha-\gamma z|}\right)^{n}|\alpha-\gamma z|^{2 i \rho-2} \phi\left(\frac{\delta z-\beta}{\alpha-\gamma z}\right)$
$\Lambda=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \quad \alpha \delta-\beta \gamma=1 \quad(\alpha, \beta, \gamma, \delta) \in C$
If $n$ odd $\quad \frac{n}{2} \leq j \quad \rightarrow \quad j=\frac{1}{2} \rightarrow n=1 \quad$ for the meson case

## Irreducible IW functions in the meson case $\mathbf{j}^{P}=\frac{1}{2}^{-}$

Need $\quad \xi_{\chi}(w)=<\phi_{\frac{1}{2}, M}^{\chi} \left\lvert\, U_{\chi}\left(\Lambda_{\tau}\right) \phi_{\frac{1}{2}, M}^{\chi}>\quad\left(\Lambda_{\tau}\right.$ : boost, $\left.w=\operatorname{ch}(\tau)\right)\right.$
$\phi_{\frac{1}{2}, M}^{\chi}$ orthonormal basis of $\mathcal{H}_{\chi}$ adapted to rotation group $S U(2)$
Compute transformed elements $U_{\chi}\left(\Lambda_{\tau}\right) \phi_{\frac{1}{2}, M}^{\chi} \quad$ (spin complications)
For $j=\frac{1}{2}$ only the principal series of representations contributes
Using scalar products for principal class of representations ( $\rho$ real)

$$
\xi_{\rho}(w)=\frac{1}{\cosh (\tau)+1} \frac{1}{\sinh (\tau)} \frac{4}{4 \rho^{2}+1}\left[\sinh \left(\frac{\tau}{2}\right) \cos (\rho \tau)+2 \rho \cosh \left(\frac{\tau}{2}\right) \sin (\rho \tau)\right]
$$

Integral formula for the Isgur-Wise function $\xi(w)$

$$
\xi(w)=\int \xi_{\rho}(w) d \nu(\rho) \quad \mathrm{d} \nu(\rho) \text { positive measure } \int d \nu(\rho)=1
$$

Constraints on the derivatives of the Isgur-Wise function
Derivative $\xi^{(k)}(1)$ : expectation value of a polynomial of degree $k$ $\xi^{(k)}(1)=(-1)^{k} \frac{1}{2^{2 k}(2 k+1)!!}<\prod_{i=1}^{k}\left[(2 i+1)^{2}+4 \rho^{2}\right]>$

In terms of moments of a positive variable $\mu_{n}=\left\langle x^{n}\right\rangle\left(x=\rho^{2}\right)$
$\xi(1)=\mu_{0}=1$
$-\xi^{\prime}(1)=\frac{3}{4}+\frac{1}{3} \mu_{1}$
$\xi^{\prime \prime}(1)=\frac{1}{240}\left(225+136 \mu_{1}+16 \mu_{2}\right)$

Moments $\mu_{k}$ in terms of derivatives $\xi(1), \xi^{\prime}(1), \ldots \xi^{(k)}(1)$
$\mu_{0}=\xi(1)=1$
$\mu_{1}=\frac{9}{4}-3 \xi^{\prime}(1)$
$\mu_{2}=\frac{3}{16}\left[27+136 \xi^{\prime}(1)+80 \xi^{\prime \prime}(1)\right]$

Constraints on moments of a variable with positive values
$\operatorname{det}\left[\left(\mu_{i+j}\right)_{0 \leq i, j \leq n}\right] \geq 0 \quad \operatorname{det}\left[\left(\mu_{i+j+1}\right)_{0 \leq i, j \leq n}\right] \geq 0$
Lower moments
$\mu_{1} \geq 0$
$\mu_{2} \geq \mu_{1}^{2}$

That imply for the derivatives of the Isgur-Wise function
$\rho^{2} \geq 0$
$\xi^{\prime \prime}(1) \geq \frac{1}{5}\left[4 \rho^{2}+3\left(\rho^{2}\right)^{2}\right]$

Same results as with the Sum Rule approach

## Consistency test for any Ansatz of the Isgur-Wise function

Integral representation of the Isgur-Wise function $\quad(w=\cosh (\tau))$
$\xi(w)=\int \frac{1}{\cosh (\tau)+1} \frac{1}{\sinh (\tau)} \frac{4}{4 \rho^{2}+1}\left[\sinh \left(\frac{\tau}{2}\right) \cos (\rho \tau)+2 \rho \cosh \left(\frac{\tau}{2}\right) \sin (\rho \tau)\right] d \nu(\rho)$
$d \nu(\rho)$ is a positive measure satisfying $\quad \int d \nu(\rho)=1$
Can invert by Fourier transform
$\widehat{\xi}(\tau) \equiv(\cosh (\tau)+1) \sinh (\tau) \xi(\operatorname{ch}(\tau))$
$(\mathcal{F} \widehat{\xi})(\sigma)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \tau \sigma}(\cosh (\tau)+1) \sinh (\tau) \xi(\operatorname{ch}(\tau)) d \tau$
$\rightarrow$ check if an Ansatz for $\xi(w)$ satisfies it with positive measures

## Phenomenological one-parameter examples

- Linear form $\quad \xi(w)=1-c(w-1)$

Does not satisfy the integral representation for any value of $c$

- Exponential form

$$
\xi(w)=\exp [-c(w-1)]
$$

Does not satisfy the integral representation for any value of $c$

- "Dipole" form

$$
\xi(w)=\left(\frac{2}{1+w}\right)^{2 c}
$$

Satisfies the integral representation if the slope $c \geq \frac{3}{4}$

- The BPS form

$$
\xi(w)=\left(\frac{2}{1+w}\right)^{3 / 2} \quad\left(c=\frac{3}{4}\right)
$$

is an irreducible Isgur-Wise function (representation with $\rho=0$ )

## Two other new rigorous results on Isgur-Wise functions

- The Bjorken-like Sum Rules imply that the Isgur-Wise function is a function of positive type :
$\int \frac{d^{3} \vec{v}}{v^{0}} \frac{d^{3} \vec{v}^{\prime}}{v^{\prime 0}} \psi\left(v^{\prime}\right)^{*} \xi\left(v . v^{\prime}\right) \psi(v) \geq 0 \quad$ for any $\psi(v)$
- There is a complete equivalence between the Sum Rule approach and the Lorentz group approach :
- The Lorentz group approach implies that $\xi(w)$ is of positive type
- The Sum Rule approach implies the Lorentz group approach


## Conclusions

- Considering the non-forward amplitude in the heavy quark limit, Bjorken-like Sum Rules give strong bounds on the derivatives of the Isgur-Wise function
- Decomposing into irreducible representations a unitary representation of the Lorentz group $\rightarrow$ one gets an integral formula for the Isgur-Wise function with positive measure
- Derivatives of the IW function given in terms of moments of a positive variable $\rightarrow$ inequalities between the derivatives the same as obtained from Bjorken-like Sum Rules
- Consistency test for any Ansatz of the IW function
- Applications to phenomenological examples
- Sum Rules $\rightarrow$ IW function is a function of positive type
- Equivalence between Sum Rule and Lorentz group approaches


## Back up slides

## New rigorous results on Isgur-Wise functions: motivations

At LHC, many more urgent subjects than $b \rightarrow c \ell \nu$ transitions :

- Search of the Higgs boson
- Search of New Physics (Supersymmetry ?)
- Precise study of $C P$ violation in $B$ mesons, as in $B_{s}-\bar{B}_{s}$
- Look for photon polarization in rare decays $b \rightarrow s \gamma$

However, there are some motivations :

- It is never too late to get new rigorous results on this subject
- $B R\left(\Lambda_{b} \rightarrow \Lambda_{c} \ell \nu\right) \simeq 5 \%$ (Tevatron), $\frac{d \Gamma}{d w}$ can be studied at LHC-b
- Exclusive (HQET) $\bar{B} \rightarrow D\left(D^{*}\right) \ell \nu \Rightarrow\left|V_{c b}\right|=(38.7 \pm 1.1) \times 10^{-3}$ Inclusive (OPE) $\quad \bar{B} \rightarrow X_{c} \ell \nu \Rightarrow\left|V_{c b}\right|=(41.5 \pm 0.7) \times 10^{-3}$
Consistent within errors, but the situation is not satisfactory


## Exclusive determination of $\left|V_{c b}\right|$

$$
\begin{aligned}
& \frac{d \Gamma\left(\bar{B} \rightarrow D^{*} \ell \nu\right)}{d w}=\frac{G_{F}^{2}}{48 \pi^{3}}\left(m_{B}-m_{D^{*}}\right)^{2} m_{D^{*}}^{3} K(w, r)\left|V_{c b}\right|^{2}\left|\mathcal{F}^{*}(1)\right|^{2}|\xi(w)|^{2} \\
& r=\frac{m_{D^{*}}}{m_{B}}, w=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{D}}, w=1 \rightarrow q_{\max }^{2}=\left(m_{B}-m_{D^{*}}\right)^{2} \\
& \mathcal{F}^{*}(1)=\eta_{A}\left(1+\delta_{\left.1 / m^{2}+\ldots\right)=0.924 \pm 0.012 \pm 0.019 \quad \text { (lattice QCD) }}^{\xi(1)=1, \quad \xi^{\prime}(1)=-\rho^{2}}\right. \\
& \left|V_{c b}\right|=(38.7 \pm 0.7 \pm 0.9) \times 10^{-3} \quad \text { (HFAG 2007) }
\end{aligned}
$$

Great dispersion of data in the $\left(\left|V_{c b}\right|, \rho^{2}\right)$ plane

$$
\text { Inclusive determination } \quad\left|V_{c b}\right|=(41.7 \pm 0.4 \pm 0.6) \times 10^{-3}
$$

[Buchmüller and Flächer (2005-2007), from Bigi et al., Bauer et al.]
$m_{b}=4.59 \mathrm{GeV}, m_{c}=1.14 \mathrm{GeV}, \mu_{G}^{2}=0.35 \mathrm{GeV}^{2}, \mu_{\pi}^{2}=0.40 \mathrm{GeV}^{2}$
Different hadronic uncertainties in inclusive vs. exclusive methods

## Operator Product Expansion

$T=i \int d^{4} x e^{-i q \cdot x}<\bar{B}\left|T\left[J(x) J^{+}(0)\right]\right| \bar{B}>\quad J=\bar{c} \Gamma b$
$T \sim \sum_{X} \frac{|<X| J(0)|\bar{B}>|^{2}}{m_{B}-q^{0}-E_{X}} \delta\left(\mathbf{p}_{X}+\mathbf{q}\right)-\sum_{X^{\prime}} \frac{\left|<X^{\prime} B \bar{B}\right| J^{+}(0)|\bar{B}>|^{2}}{m_{B}+q^{0}-\left(E_{X^{\prime}}+2 m_{B}\right)} \delta\left(\mathbf{p}_{X^{\prime}}-\mathbf{q}\right)$
Direct channel virtuality

$$
\mathcal{V}=m_{B}-q^{0}-E_{X}
$$

Choose $q^{0}$ such that

$$
\Lambda_{Q C D} \ll \mathcal{V} \ll m_{B}
$$

Crossed channel denominator $\quad \mathcal{V}+2 m_{D} \gg \mathcal{V}$
Leading contribution to the OPE
$T=i \int d^{4} x e^{-i q \cdot x}<\bar{B}\left|\bar{b}(x) \Gamma^{+} S_{c}^{\text {free }}(x, 0) \Gamma b(0)\right| \bar{B}>+O\left(1 / m_{c}^{2}\right)$
Varying independently $\mathcal{V}, m_{b}, m_{c}$ and equating residues
$\left.\sum_{X_{c}}\left|<X_{c}\right| J(0)\left|\bar{B}>\left.\right|^{2}=<\bar{B}\right| \bar{b} \bar{\Gamma} \frac{y_{c}^{\prime}+1}{2 v_{c}^{\prime 0}} \Gamma b(0) \right\rvert\, \bar{B}>$
$\frac{Y_{c}^{\prime}+1}{2 v_{c}^{\prime 0}}$ : positive energy residue of $c$ quark propagator

## Details of the calculations of the sum rules and bounds

- The excited states of arbitrary spin (Falk 1992)
- Calculation of the polynomial $S_{L}\left(w_{i}, w_{f}, w_{i f}\right)$ (Le Yaouanc et al. 2002)
- Simple derivation of Bjorken and Uraltsev SR (Le Yaouanc et al. 2002)
- Generalizations for higher derivatives (Le Yaouanc et al. 2002)
- Proof of improved bound on the curvature (Le Yaouanc et al. 2003)
- The Isgur-Wise function in the BPS limit (Jugeau et al. 2006)
- Radiative corrections (Dorsten 2003)
- Phenomenology (Dorsten 2003)


## $4 \times 4$ matrices for states of arbitrary spin

$L$ : orbital angular momentum of light clound of half-integer spin $j$ $k=j-\frac{1}{2}$
$\bullet j=L+\frac{1}{2}, J=j+\frac{1}{2} \quad \mathcal{M}^{\mu_{1}, \ldots \mu_{k}}(v)=P_{+} \epsilon^{\mu_{1}, \ldots \mu_{k+1}} \gamma_{\mu_{k+1}}$
$\bullet j=L+\frac{1}{2}, J=j-\frac{1}{2} \quad \mathcal{M}^{\mu_{1}, \ldots \mu_{k}}(v)=-\sqrt{\frac{2 k+1}{k+1}} P_{+} \gamma_{5} \epsilon^{\nu_{1}, \ldots \nu_{k}}$
$\times\left[g_{\nu_{1}}^{\mu_{1}} \ldots g_{\nu_{k}}^{\mu_{k}}-\frac{1}{k+1}\left[\gamma_{\nu_{1}}\left(\gamma^{\mu_{1}}-v^{\mu_{1}}\right) g_{\nu_{2}}^{\mu_{2}} \ldots g_{\nu_{k}}^{\mu_{k}}+g_{\nu_{1}}^{\mu_{1}} \ldots g_{\nu_{k-1}}^{\mu_{k-1}} \gamma_{\nu_{k}}\left(\gamma^{\mu_{k}}-v^{\mu_{k}}\right)\right]\right]$
$\bullet j=L-\frac{1}{2}, J=j+\frac{1}{2} \quad \mathcal{M}^{\mu_{1}, \ldots \mu_{k}}(v)=P_{+} \epsilon^{\mu_{1}, \ldots \mu_{k+1}} \gamma_{5} \gamma_{\mu_{k+1}}$

- $j=L-\frac{1}{2}, J=j-\frac{1}{2} \quad \mathcal{M}^{\mu_{1}, \ldots \mu_{k}}(v)=\sqrt{\frac{2 k+1}{k+1}} P_{+} \epsilon^{\nu_{1}, \ldots \nu_{k}}$
$\times\left[g_{\nu_{1}}^{\mu_{1}} \ldots g_{\nu_{k}}^{\mu_{k}}-\frac{1}{k+1}\left[\gamma_{\nu_{1}}\left(\gamma^{\mu_{1}}-v^{\mu_{1}}\right) g_{\nu_{2}}^{\mu_{2}} \ldots g_{\nu_{k}}^{\mu_{k}}+g_{\nu_{1}}^{\mu_{1}} \ldots g_{\nu_{k-1}}^{\mu_{k-1}} \gamma_{\nu_{k}}\left(\gamma^{\mu_{k}}-v^{\mu_{k}}\right)\right]\right]$


## Sketch of the demonstration

Reduce to a three-dimensional problem at rest
$v^{\prime}=(1, \mathbf{0}), v_{i}=\left(\sqrt{1+\mathbf{v}_{i}^{2}}, \mathbf{v}_{i}\right), v_{f}=\left(\sqrt{1+\mathbf{v}_{f}^{2}}, \mathbf{v}_{f}\right) \rightarrow T^{j_{1}, \ldots j_{L}, i_{1} \ldots i_{L}}$
Couple $L$ angular momenta $\overrightarrow{1}$ into total $\vec{L}$

$$
S_{L}\left(\mathbf{v}_{i}^{2}, \mathbf{v}_{f}^{2}, \mathbf{v}_{i}, \mathbf{v}_{f}\right)=\sum_{j_{1} \ldots j_{L}} \sum_{k_{1} \ldots k_{L}} v_{f}^{k_{1}} \ldots v_{f}^{k_{L}} T^{k_{1}, \ldots k_{L}, j_{1} \ldots j_{L}} v_{i}^{j_{1}} \ldots v_{i}^{j_{L}}
$$

$$
=\frac{2^{L}(L!)^{2}}{(2 L+1)!} 4 \pi \sum_{M=-L}^{M=L} \mathcal{Y}_{L}^{M}\left(\mathbf{v}_{f}\right)^{*} \mathcal{Y}_{L}^{M}\left(\mathbf{v}_{i}\right)=\frac{2^{L}(L!)^{2}}{(2 L)!}\left|\mathbf{v}_{i}\right|^{L}\left|\mathbf{v}_{f}\right|^{L} P_{L}\left(\hat{\mathbf{v}}_{i} \cdot \hat{\mathbf{v}}_{f}\right)
$$

$S_{L}\left(\mathbf{v}_{i}^{2}, \mathbf{v}_{f}^{2}, \mathbf{v}_{i}, \mathbf{v}_{f}\right)=\sum_{0 \leqslant k \leqslant \frac{L}{2}} \frac{(L!)^{2}}{(2 L)!}(-1)^{k} \frac{(2 L-2 k)!}{k!(L-k)!(L-2 k)!}\left(\mathbf{v}_{i}^{2}\right)^{k}\left(\mathbf{v}_{f}^{2}\right)^{k}\left(\mathbf{v}_{i} \cdot \mathbf{v}_{f}\right)^{L-2 k}$
Covariant $\rightarrow \mathbf{v}_{i}^{2}=w_{i}^{2}-1, \mathbf{v}_{f}^{2}=w_{f}^{2}-1, \mathbf{v}_{i} \cdot \mathbf{v}_{f}=w_{i} w_{f}-w_{i f}$

## Improved bound on the curvature

$$
\begin{array}{ll}
{\left[\frac{d^{p+q} L_{\text {Hadrons }}^{V}}{d w_{i f}^{P} d w^{q}}\right]_{w_{i f}=w=1}=\left[\frac{d^{p+q} R_{O P E}^{V}}{d w_{i f}^{P} d w^{q}}\right]_{w_{\text {if }}=w=1}=0} & (\mathrm{p}+\mathrm{q}=0,1,2) \\
{\left[\frac{d^{p+q} L_{\text {Hadrons }}^{A}}{d w_{i f}^{P} d w^{q}}\right]_{w_{i f}=w=1}=\left[\frac{d^{p+q} R_{O P E}^{A}}{d w_{i f}^{P} d w^{q}}\right]_{w_{i f}=w=1}=0} & (\mathrm{p}+\mathrm{q}=0,1,2,3)
\end{array}
$$

4 linearly independent equations for the curvature $\sigma^{2}=\xi^{\prime \prime}(1)$

$$
\rho^{2}-\frac{5}{4} \sigma^{2}+\sum_{n}\left[\tau_{3 / 2}^{(1)(n)}(1)\right]^{2}=0 \quad \rightarrow \quad \sigma^{2} \geqslant \frac{5}{4} \rho^{2} \quad \text { (see above) }
$$

## Shape of the Isgur-Wise function in a limit of HQET

Matrix elements of dimension 5 operators in HQET
$\mu_{\pi}^{2}=-\frac{1}{2 m_{B}}<\bar{B}\left|\bar{h}_{v}(i D)^{2} h_{V}\right| \bar{B}>\quad$ kinetic operator
$\mu_{G}^{2}=\frac{1}{2 m_{B}}<\bar{B}\left|\frac{g_{s}}{2} \bar{h}_{v} \sigma_{\alpha \beta} G^{\alpha \beta} h_{v}\right| \bar{B}>\quad$ chromomagnetic operator
Sum Rules in terms of $\frac{1}{2}^{-} \rightarrow \frac{1}{2}^{+}, \frac{3}{2}^{+}$IW functions $\tau_{j}^{(n)}$ and level spacings $\Delta E_{j}^{(n)}$ (Bigi et al., 1995) :
$\mu_{\pi}^{2}=6 \sum_{n}\left[\Delta E_{3 / 2}^{(n)}\right]^{2}\left[\tau_{3 / 2}^{(n)}(1)\right]^{2}+3 \sum_{n}\left[\Delta E_{1 / 2}^{(n)}\right]^{2}\left[\tau_{1 / 2}^{(n)}(1)\right]^{2}$
$\mu_{G}^{2}=6 \sum_{n}\left[\Delta E_{3 / 2}^{(n)}\right]^{2}\left[\tau_{3 / 2}^{(n)}(1)\right]^{2}-6 \sum_{n}\left[\Delta E_{1 / 2}^{(n)}\right]^{2}\left[\tau_{1 / 2}^{(n)}(1)\right]^{2}$
Inequality $\mu_{\pi}^{2} \geqslant \mu_{G}^{2} \quad$ (expt. $\mu_{\pi}^{2} \cong 0.40 \mathrm{GeV}^{2}, \mu_{G}^{2} \cong 0.35 \mathrm{GeV}^{2}$ )

## The so-called BPS limit of HQET

$\mu_{\pi}^{2}=\mu_{G}^{2} \quad \rightarrow \quad \tau_{1 / 2}^{(n)}(1)=0 \quad$ (Uraltsev, 2001)
BPS with two derivatives $\rightarrow \tau_{3 / 2}^{(2)(n)}(1)=0 \rightarrow \sigma^{2}=\frac{15}{16}$
To generalize need to demonstrate $\quad \tau_{L-1 / 2}^{(L)(n)}(1)=0$
By induction : $\tau_{1 / 2}^{(1)(n)}(1)=\tau_{3 / 2}^{(2)(n)}(1)=0$, assume $\tau_{L-3 / 2}^{(L-1)(n)}(1)=0$
Vector and Axial SR $\rightarrow \tau_{L-1 / 2}^{(L)(n)}(1)=0 \rightarrow(-1)^{L} \xi^{(L)}(1)=\frac{(2 L+1)!!}{2^{2 L}}$

Therefore BPS implies the explicit form

$$
\xi(w)=\left(\frac{2}{w+1}\right)^{3 / 2}
$$

Defined limit of HQET $\rightarrow$ explicit form for the elastic IW function
This limit has a simple group theoretical interpretation

## Radiative corrections

Two types of radiative corrections : (1) within HQET
(2) Wilson coefficients to make the matching with QCD

Modified sum rule (Dorsten 2003)
$\mu$-dependence in OPE side and cut-off $\Delta$ in hadronic sum
$\sum_{X_{c}} W_{\Delta}\left(E_{M}-E_{X_{c}}\right)<\bar{B}_{f}\left|J_{f}(0)\right| X_{c}><X_{c}\left|J_{i}(0)\right| \bar{B}_{i}>$
$=2 \xi\left(w_{i f}\right)\left[1+\alpha_{s}(\mu) F\left(w_{i}, w_{f}, w_{i f}\right)\right] \operatorname{Tr}\left[P_{f+} \psi_{f}\left(\gamma_{5}\right) P_{+}^{\prime} \psi_{i}\left(\gamma_{5}\right) P_{i+}\right]$
Universal function $F\left(w_{i}, w_{f}, w_{i f}\right) \rightarrow F(1, w, w)=F(w, 1, w)=0$
Modified bound due to radiative corrections within HQET
$\sigma^{2}(\mu)>\frac{3}{5}\left[\rho^{2}(\mu)\right]^{2}+\frac{4}{5} \rho^{2}(\mu)\left[1+\frac{20 \alpha_{s}(\mu)}{27 \pi}\right]-\frac{148 \alpha_{s}(\mu)}{675 \pi} \quad(\Delta=2 \mu)$
Curvature of physical axial form factor $\sigma_{A_{1}}^{2}>0.94-0.07_{p}-0.2_{n p}$


The case of baryons $\quad \Lambda_{b}\left(v_{i}\right) \rightarrow \Lambda_{c}^{(n)}\left(v^{\prime}\right) \rightarrow \Lambda_{b}\left(v_{f}\right)$
$\Lambda_{b}:\left(j^{P}, J^{P}\right)=\left(0^{+}, \frac{1}{2}^{+}\right)$
$\Lambda_{c}^{(n)}: \operatorname{tower}\left(j^{P}, J^{P}\right), J=j, j=L, P=(-1)^{L}$

## Sum rule

$\xi_{\Lambda}\left(w_{i f}\right)=\sum_{n} \sum_{L \geq 0} \tau_{L}^{(n)}\left(w_{i}\right)^{*} \tau_{L}^{(n)}\left(w_{f}\right)$
$\sum_{0 \leq k \leq L / 2} C_{L, k}\left(w_{i}^{2}-1\right)^{k}\left(w_{f}^{2}-1\right)^{k}\left(w_{i} w_{f}-w_{i f}\right)^{L-2 k}$
IW functions $\tau_{L}(w): 0^{+} \rightarrow L^{P}, P=(-1)^{L}$
One finds the constraints on the derivatives :

$$
\rho_{\Lambda}^{2}=-\xi_{\Lambda}^{\prime}(1) \geq 0 \quad \xi_{\Lambda}^{\prime \prime}(1) \geq \frac{3}{5}\left[\rho_{\Lambda}^{2}+\left(\rho_{\Lambda}^{2}\right)^{2}\right]
$$

$\underline{\text { Supplementary series }} \quad \chi=(s, \rho)$
$\rho \in R \quad(0<\rho<1)$
Hilbert space $\mathcal{H}_{s, \rho}$
$<\phi^{\prime}\left|\phi>=\int \overline{\phi^{\prime}\left(z_{1}\right)}\right| z_{1}-\left.z_{2}\right|^{2 \rho-2} \phi\left(z_{2}\right) d^{2} z_{1} d^{2} z_{2}$
(non-standard scalar product)
Unitary operator $U_{s, \rho}(\Lambda)$
$\left(U_{s, \rho}(\Lambda) \phi\right)(z)=|\alpha-\gamma z|^{-2 \rho-2} \phi\left(\frac{\delta z-\beta}{\alpha-\gamma z}\right)$
Trivial representation

$$
\chi=t
$$

Hilbert space $\mathcal{H}_{t}=C$
$<\phi^{\prime} \mid \phi>=\overline{\phi^{\prime}(z)} \phi(z)$
Unitary operator

$$
U_{t}(\Lambda)=1
$$

## Decomposition under the rotation group

Need restriction to $S U(2)$ of unitary representations $\chi$ of $S L(2, C)$
For a $\chi$ there is an orthonormal basis $\phi_{j, M}^{\chi}$ of $\mathcal{H}_{\chi}$ adapted to $S U(2)$
Particularizing to $j=0$ : all types of representations contribute
$\phi_{0,0}^{p, 0, \rho}(z)=\frac{1}{\sqrt{\pi}}\left(1+|z|^{2}\right)^{i \rho-1}$

$$
\phi_{0,0}^{s, \rho}(z)=\frac{\sqrt{\rho}}{\pi}\left(1+|z|^{2}\right)^{-\rho-1}
$$

$$
\phi_{0,0}^{t}(z)=1
$$

$$
\begin{aligned}
& (\chi=(p, 0, \rho), \rho \geq 0) \\
& (\chi=(s, \rho), 0<\rho<1) \\
& (\chi=t)
\end{aligned}
$$

For $j \neq 0$ enters also the matrix element
$D_{M^{\prime}, M}^{j}(R)=<j, M^{\prime}\left|U_{j}(R)\right| j, M>\quad R \in S U(2)$

## Irreducible IW functions in the case $\mathbf{j}=\mathbf{0}$

Need $\quad \xi_{\chi}(w)=<\phi_{0,0}^{\chi} \mid U_{\chi}\left(\Lambda_{\tau}\right) \phi_{0,0}^{\chi}>\quad\left(\Lambda_{\tau}\right.$ : boost, $\left.w=\operatorname{ch}(\tau)\right)$
Transformed elements $U_{\chi}\left(\Lambda_{\tau}\right) \phi_{0,0}^{\chi}$
$\left(U_{\rho, 0, \rho}\left(\Lambda_{\tau}\right) \phi_{0,0}^{p, 0, \rho}\right)(z)=\frac{1}{\sqrt{\pi}}\left(e^{\tau}+e^{-\tau}|z|^{2}\right)^{i \rho-1}$
$\left(U_{s, \rho}\left(\Lambda_{\tau}\right) \phi_{0,0}^{5, \rho}\right)(z)=\frac{\sqrt{\rho}}{\sqrt{\pi}}\left(e^{\tau}+e^{-\tau}|z|^{2}\right)^{-\rho-1}$
$U_{t}\left(\Lambda_{\tau}\right) \phi_{0,0}^{t}=1$
Using the scalar products for each class of representations
$\xi_{p, 0, \rho}(w)=\frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)} \quad(\rho \geq 0)$
$\xi_{s, \rho}(w)=\frac{\operatorname{sh}(\rho \tau)}{\rho \operatorname{sh}(\tau)} \quad(0<\rho<1)$
$\xi_{t}(w)=1$

## Integral formula for the IW function in the case $j=0$

$$
\xi(w)=\int_{\left[0, \infty\left[\frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)}\right.\right.} d \nu_{p}(\rho)+\int_{] 0,1[ } \frac{\operatorname{sh}(\rho \tau)}{\rho \operatorname{sh}(\tau)} d \nu_{s}(\rho)+\nu_{t}
$$

$\nu_{p}$ and $\nu_{s}$ are positive measures and $\nu_{t}$ a $\geq 0$ real number

$$
\int_{[0, \infty[ } d \nu_{p}(\rho)+\int_{] 0,1[ } d \nu_{s}(\rho)+\nu_{t}=1
$$

One-parameter family

$$
\xi_{x}(w)=\frac{\operatorname{sh}(\tau \sqrt{1-x})}{\operatorname{sh}(\tau) \sqrt{1-x}}=\frac{\sin (\tau \sqrt{x-1})}{\operatorname{sh}(\tau) \sqrt{x-1}}
$$

covers all irreducible representations $\rightarrow$ simplifies integral formula $\xi(w)=\int_{[0, \infty[ } \xi_{x}(w) d \nu(x) \quad\left(\nu\right.$ positive measure $\left.\int_{[0, \infty[ } d \nu(x)=1\right)$
$\rightarrow$ a transparent deduction of constraints on the derivatives $\xi^{(n)}(1)$

## Integral formula for the IW function in the case $j=0$

$$
\xi(w)=\int_{\left[0, \infty\left[\frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)}\right.\right.} d \nu_{p}(\rho)+\int_{] 0,1[ } \frac{\operatorname{sh}(\rho \tau)}{\rho \operatorname{sh}(\tau)} d \nu_{s}(\rho)+\nu_{t}
$$

$\nu_{p}$ and $\nu_{s}$ are positive measures and $\nu_{t}$ a $\geq 0$ real number

$$
\int_{[0, \infty[ } d \nu_{p}(\rho)+\int_{] 0,1[ } d \nu_{s}(\rho)+\nu_{t}=1
$$

One-parameter family

$$
\xi_{x}(w)=\frac{\operatorname{sh}(\tau \sqrt{1-x})}{\operatorname{sh}(\tau) \sqrt{1-x}}=\frac{\sin (\tau \sqrt{x-1})}{\operatorname{sh}(\tau) \sqrt{x-1}}
$$

covers all irreducible representations $\rightarrow$ simplifies integral formula $\xi(w)=\int_{[0, \infty[ } \xi_{x}(w) d \nu(x) \quad\left(\nu\right.$ positive measure $\left.\int_{[0, \infty[ } d \nu(x)=1\right)$
$\rightarrow$ a transparent deduction of constraints on the derivatives $\xi^{(n)}(1)$

## Example 3

From the integral representation
$\xi(w)=\int_{[0, \infty[ } \xi_{x}(w) d \nu(x) \quad\left(\nu\right.$ positive measure $\left.\int_{[0, \infty[ } d \nu(x)=1\right)$
and

$$
\xi_{x}(w)=\frac{\operatorname{sh}(\tau \sqrt{1-x})}{\operatorname{sh}(\tau) \sqrt{1-x}}=\frac{\sin (\tau \sqrt{x-1})}{\operatorname{sh}(\tau) \sqrt{x-1}}
$$

if the curvature saturates its lower bound $\quad \xi^{\prime \prime}(1)=\frac{3}{5} \rho_{\Lambda}^{2}\left(1+\rho_{\Lambda}^{2}\right)$

$$
\xi(w)=\frac{\operatorname{sh}(\tau \sqrt{1-3 c})}{\operatorname{sh}(\tau) \sqrt{1-3 c}}=\frac{\sin (\tau \sqrt{3 c-1})}{\operatorname{sh}(\tau) \sqrt{3 c-1}}
$$

valid for any slope $c=\rho_{\Lambda}^{2} \geqslant 0$
i.e. the lower bound predicted by HQET (Isgur et al.)

This is an irreducible Isgur-Wise function since only one irreducible representation contributes to the integral formula

## One-parameter functions satisfying the Lorentz constraints

- Isgur-Wise function for baryons $j^{P}=0^{+} \quad \Lambda_{b} \rightarrow \Lambda_{c} \ell \nu$

$$
\xi_{\Lambda}(w)=\left(\frac{2}{w+1}\right)^{2 \rho_{\Lambda}^{2}} \quad \text { with } \quad \rho_{\Lambda}^{2} \geq \frac{1}{4}
$$

Rigorous lower bound (Isgur et al. SR) : $\quad \rho_{\Lambda}^{2} \geq 0$

- Isgur-Wise function for mesons $j^{P}=\frac{1}{2}^{-} \quad \bar{B} \rightarrow D\left(D^{*}\right) \ell \nu$

One can apply the method to mesons (spin complications)

$$
\xi(w)=\left(\frac{2}{w+1}\right)^{2 \rho^{2}} \quad \text { with } \quad \rho^{2} \geq \frac{3}{4}
$$

Rigorous lower bound (Bjorken + Uraltsev SR) : $\quad \rho^{2} \geq \frac{3}{4}$
Clean group theoretical interpretation : only one irreducible representation contributes to the integral formula

## BPS limit of HQET

$\mu_{\pi}^{2}=\mu_{G}^{2} \quad \rightarrow \quad \tau_{1 / 2}^{(n)}(1)=0 \quad$ (Uraltsev, 2001)
Limit of HQET $\quad(\vec{\sigma} . i \vec{D}) h_{v} \mid \bar{B}>=0$ (small components in $\bar{B} \rightarrow 0$ )
Covariant form $\quad \gamma_{5} i D h_{v} \mid \bar{B}>=0 \quad$ (eq. of motion (iD.v) $h_{v}=0$ )
$\gamma_{5} i D \gamma_{5} i D=-\left[(i D)^{2}+\frac{g_{5}}{2} \sigma_{\alpha \beta} G^{\alpha \beta}\right] \quad \rightarrow \quad \mu_{\pi}^{2}=\mu_{G}^{2}$
Leading and subleading matrix elements $\left(\frac{1}{2}^{-}, 0^{-}\right) \rightarrow\left(\frac{1}{2}^{+}, 0^{+}\right)$
$<D\left(0^{+}\right)\left(v^{\prime}\right)\left|\bar{h}_{v^{\prime}}^{(c)} \Gamma h_{v}^{(b)}\right| \bar{B}(v)>=2 \tau_{1 / 2}(w) \operatorname{Tr}\left[P_{+}^{\prime} \Gamma P_{+}\left(-\gamma_{5}\right)\right]$
$<D\left(0^{+}\right)\left(v^{\prime}\right)| |_{v^{\prime}}^{(c)} \Gamma i \overrightarrow{\mathcal{D}}_{\lambda} h_{v}^{(b)} \mid \bar{B}(v)>=\operatorname{Tr}\left[S_{\lambda}^{(b)} P_{+}^{\prime} \Gamma P_{+}\left(-\gamma_{5}\right)\right]$
$<D\left(0^{+}\right)\left(v^{\prime}\right)\left|\bar{h}_{v^{\prime}}^{(c)} i \overleftarrow{\mathcal{D}}_{\lambda} \Gamma h_{v}^{(b)}\right| \bar{B}(v)>=\operatorname{Tr}\left[S_{\lambda}^{(c)} P_{+}^{\prime} \Gamma P_{+}\left(-\gamma_{5}\right)\right]$
$S_{\lambda}^{(Q)}=\zeta_{1}^{(Q)} v_{\lambda}+\zeta_{2}^{(Q)} v_{\lambda}^{\prime}+\zeta_{3}^{(Q)} \gamma_{\lambda}$

## Shape of the Isgur-Wise function in the BPS limit of HQET

Eq. of motion + translational invariance : $\zeta_{3}^{(b)(n)}(1)=-\Delta E_{1 / 2}^{(n)} \tau_{1 / 2}^{(1)(n)}(1)$ $i \partial_{\lambda}\left\langle D\left(0^{+}\right)\left(v^{\prime}\right)\right| \bar{h}_{v^{\prime}}^{(c)} \Gamma h_{v}^{(b)}|\bar{B}(v)\rangle=\left(\bar{\Lambda} v_{\lambda}-\bar{\Lambda}^{*} v_{\lambda}^{\prime}\right) 2 \tau_{1 / 2}(w) \operatorname{Tr}\left[P_{+}^{\prime} \Gamma P_{+}\left(-\gamma_{5}\right)\right]$
$\mathrm{BPS}<D\left(0^{+}\right)\left(v^{\prime}\right)\left|\bar{h}_{v^{\prime}}^{(c)} \Gamma i \overrightarrow{\mathcal{D}}_{\lambda} h_{v}^{(b)}\right| \bar{B}(v)>=0 \quad \rightarrow \quad \zeta_{3}^{(b)(n)}(1)=0$
$\rightarrow \tau_{1 / 2}^{(1)(n)}(1)=0 \rightarrow \rho^{2}=\frac{3}{4} \quad$ (from Bjorken + Uraltsev SR)
BPS with two derivatives $\rightarrow \tau_{3 / 2}^{(2)(n)}(1)=0 \rightarrow \sigma^{2}=\frac{15}{16}$
To generalize need to demonstrate $\quad \tau_{L-1 / 2}^{(L)(n)}(1)=0$
By induction : $\tau_{1 / 2}^{(1)(n)}(1)=\tau_{3 / 2}^{(2)(n)}(1)=0$, assume $\tau_{L-3 / 2}^{(L-1)(n)}(1)=0$
Vector and Axial SR $\rightarrow \tau_{L-1 / 2}^{(L)(n)}(1)=0 \rightarrow(-1)^{L} \xi^{(L)}(1)=\frac{(2 L+1)!!}{2^{2 L}}$
Therefore BPS implies the explicit form

$$
\xi(w)=\left(\frac{2}{w+1}\right)^{3 / 2}
$$

Example 3 (only the principal series contributes)
$\xi(w)=\frac{1}{\left[1+\frac{c}{2}(w-1)\right]^{2}}=\frac{8}{c^{2}} \int_{0}^{\infty} \frac{\rho^{2}}{\operatorname{sh}(\pi \rho)} \frac{\operatorname{sh}(\gamma \rho)}{\operatorname{sh}(\gamma)} \frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)} d \rho$
$\left(\cos \gamma=\frac{2}{c}-1\right) \quad$ valid for any slope $c=\rho_{\Lambda}^{2} \geqslant 1$
Example 4
From the integral representation
if the curvature saturates its lower bound
$\xi(w)=\frac{\operatorname{sh}(\tau \sqrt{1-3 c})}{\operatorname{sh}(\tau) \sqrt{1-3 c}}=\frac{\sin (\tau \sqrt{3 c-1})}{\operatorname{sh}(\tau) \sqrt{3 c-1}}$
valid for any slope $c=\rho_{\Lambda}^{2} \geqslant 0$
i.e. the lower bound predicted by HQET (Isgur et al.)

This is an irreducible Isgur-Wise function :
One irreducible representation contributes to the integral formula

## The Isgur-Wise function is a function of positive type

For any $N$ and any complex numbers $a_{i}$ and velocities $v_{i}$
$\sum_{i, j=1}^{N} a_{i}^{*} a_{j} \xi\left(v_{i} \cdot v_{j}\right) \geq 0 \quad$ or, in a covariant form
$\int \frac{d^{3} \vec{v}}{v^{0}} \frac{d^{3} \vec{v}^{\prime}}{v^{\prime 0}} \psi\left(v^{\prime}\right)^{*} \xi\left(v . v^{\prime}\right) \psi(v) \geq 0 \quad$ for any $\psi(v)$
From the Sum Rule $\quad\left(w_{i}=v_{i} \cdot v^{\prime}, w_{j}=v_{j} \cdot v^{\prime}, w_{i j}=v_{i} \cdot v_{j}\right)$
$\xi\left(w_{i j}\right)=\sum_{n} \sum_{L} \tau_{L}^{(n)}\left(w_{i}\right)^{*} \tau_{L}^{(n)}\left(w_{j}\right)$
$\sum_{0 \leq k \leq L / 2} C_{L, k}\left(w_{i}^{2}-1\right)^{k}\left(w_{j}^{2}-1\right)^{k}\left(w_{i} w_{j}-w_{i j}\right)^{L-2 k}$
Legendre polynomial. Use rest frame $v^{\prime}=(1,0,0,0)$
$\sum_{i, j=1}^{N} a_{i}^{*} a_{j} \xi\left(v_{i} . v_{j}\right)=4 \pi \sum_{i, j=1}^{N} \sum_{n} \sum_{L} \frac{2^{L}(L!)^{2}}{(2 L+1)!} \sum_{m=-L}^{m=+L}$
$\left[a_{i} \tau_{L}^{(n)}\left(\sqrt{1+\vec{v}_{i}^{2}}\right) \mathcal{Y}_{L}^{m}\left(\vec{v}_{i}\right)\right]^{*}\left[a_{j} \tau_{L}^{(n)}\left(\sqrt{1+\vec{v}_{j}^{2}}\right) \mathcal{Y}_{L}^{m}\left(\vec{v}_{j}\right)\right] \geq 0$

## One example : application to the exponential form

$\xi(w)=\exp [-c(w-1)]$
$I=\int \frac{d^{3} \vec{v} d^{3} \vec{v}^{\prime}}{v^{0}} \frac{v^{\prime 0}}{} \phi\left(\left|\vec{v}^{\prime}\right|\right)^{*} \exp \left[-c\left(\left(v \cdot v^{\prime}\right)-1\right)\right] \phi(|\vec{v}|)$
$=16 \pi^{3} \frac{e^{c}}{c} \int_{-\infty}^{\infty} K_{i \rho}(c)|\tilde{f}(\rho)|^{2} d \rho$
$f(\eta)=\operatorname{sh}(\eta) \phi(\operatorname{sh}(\eta))$
$K_{\nu}(z)=\frac{1}{2} \int_{-\infty}^{\infty} \exp [-z \operatorname{ch}(t)] e^{\nu t} d t \quad$ Macdonald function
Whatever the slope $c>0, K_{i \rho}(c)$ takes negative values
Asymptotic formula
$K_{i \rho}(c) \sim \sqrt{\frac{2 \pi}{\rho}} e^{-\rho \pi / 2} \cos \left[\rho\left(\log \left(\frac{2 \rho}{c}\right)-1\right)-\frac{\pi}{4}\right] \quad(\rho \gg c)$
Therefore there a function $\psi(v)$ for which the integral $I<0$
The exponential form is inconsistent with the Sum Rules

## Sum Rule and Lorentz group approaches are equivalent

- The Lorentz group approach implies that $\xi(w)$ is of positive type $\xi(w)=<U\left(B_{v^{\prime}}\right) \psi_{0} \mid U\left(B_{v}\right) \psi_{0}>\quad\left(B_{v}:\right.$ boost $\left.v_{0} \rightarrow v\right)$
$\sum_{i, j=1}^{N} a_{i}^{*} a_{j} \xi\left(v_{i} \cdot v_{j}\right)=\left\|\sum_{j=1}^{N} a_{j} U\left(B_{v_{j}}\right) \psi_{0}\right\|^{2} \geq 0$
- The Sum Rule approach implies the Lorentz group approach

A function $f(\Lambda)$ on the group $S L(2, C)$ is of positive type when
$\sum_{i, j=1}^{N} a_{i}^{*} a_{j} f\left(\Lambda_{i}^{-1} \Lambda_{j}\right) \geq 0$
$\left(N \geq 1\right.$, complex $\left.a_{i}, \Lambda_{i} \in S L(2, C)\right)$
Theorem (Dixmier) : for any function $f(\Lambda)$ of positive type exists a unitary representation $U(\Lambda)$ of $S L(2, C)$ in a Hilbert space $\mathcal{H}$ and an element $\phi_{0} \in \mathcal{H} \rightarrow f(\Lambda)=<\phi_{0} \mid U(\Lambda) \phi_{0}>$
Definition of $f\left(\Lambda_{i}^{-1} \Lambda_{j}\right)=\xi\left(v_{i} \cdot v_{j}\right)=\xi\left(v_{0} \cdot \Lambda_{i}^{-1} \Lambda_{j} v_{0}\right)$

## Lorentz group in our approach vs. Poincaré group

One can ask the question about which is the relation between the Lorentz group used in our approach and the Poincaré group

- Naïmark: we use the Lorentz group (no translations), more precisely the orthochronous proper Lorentz group, more precisely its connected recovering to get half-integer spin (parity must also be included)
- Wigner: Poincaré group (translations included)
$\rightarrow$ classification of massive and massless particles
- These are two quite different kinds of problems

