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Classical hyperparameter tuning

Algorithm Hyperparameters

SVM, k(x , y) = exp
(
−‖x−y‖2

2`2

)
`,C

MLP learning rate, batchsize,
size of hidden layer, penalties, ...

Boosting Number of iterations, hyper-
parameters of the weak classifiers.

ExhaustiveTuning
(
D,H ⊂ H,A

)
1 for x ∈ H, . Outer loop

2 Train A on D with hyperparameters x , . Inner loop

3 Compute validation error f (x) = R(A(D, x)),

4 return arg minx∈H f (x).
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Sequential model-based optimization

SMBO
(
f ,M0,T ,S

)
1 O ← ∅,
2 For t ← 1 to T ,

3 x∗ ← arg maxx S(x ,Mt−1),

4 Evaluate f (x∗), . Expensive step

5 O ← O ∪ (x∗, f (x∗)),

6 Fit a new modelMt to O,

7 return arg minO f (x).

I SMBO is useful when target evaluation is costly.
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Gaussian Processes and Expected Improvement
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I GPs are priors over functions that are closed under sampling.
I EI(x) := E

(
(mini f (xi )− f (x)) ∧ 0|Fn

)
.

I There are other choices [6, 10, 8].
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Sequential model-based tuning in ML

I SMBO was successfully applied to deep learning [1],

I Since then, advances were made in methodology [8],
benchmarking [9], software [2].

But...

All experiments have been based on single datasets, while humans
have a memory of past experiments on similar datasets.

I Is there something to gain by using information obtained on
other datasets?

I Does the SMBO framework extend to several datasets?
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A common latent structure
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I Validation errors on 2 datasets can differ arbitrarily in scale.

I We need a target
fA : D×H→ R

that conveys information such that

if fA(D1, x1) < fA(D1, x2) and D2 is similar to D1,
then probably fA(D2, x1) < fA(D2, x2),
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A latent ranker

I SVMrank [5] tries to find a smooth function g that is
monotone in the input rankings: x ≺ y ⇒ g(x) ≤ g(y).

I A new SMBO paradigm: define

(D, x1) ≺ (D, x2)⇔ R
(
A(D, x1)

)
< R

(
A(D, x2)

)
,

and repeatedly
1 give all available rankings to SVMrank,
2 fit a GP to SVMrank’s output g ,
3 maximize EI : H→ R+,
4 evaluate new point.

I The latent ranker of SVMrank carries all information provided
by the validation errors across datasets.

I The choice of SVMrank is not unique [4].
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The surrogate tuning algorithm

ST
(
D,T ,O = (D,H,R),A,B

)
1 O0 ← O,

2 For t ← 0 to T − 1,

3 Compute rankings Pt defined by ≺ from Ot ,

4 f̂t ← surrogate model built by B called on

5 (Dt ,Ht) with rankings Pt ,

6 Mt−1 ← Posterior GP on f̂t knowing

7 ((Dt ,Ht), f̂t),

8 x∗ ← argmaxx∈H EI (D, x),

9 R∗ ← R(A(D, x∗)), . Run learning algo.

10 Ot+1 ← Ot ∪ (D, x∗,R∗),

11 return OT .

11/23



The surrogate collaborative tuning algorithm

SCoT
(
(D1, . . . ,DM),T ,O = (D,H,R),A,B

)
1 O0 ← O.

2 For t ← 0 to T − 1,

3 For i ← 1 to M,

4 Compute rankings Pt defined by ≺ from Ot ,

5 f̂t ← surrogate model built by B called on

6 (Dt ,Ht) with rankings Pt ,

7 Mt−1 ← Posterior GP on f̂t knowing

8
(
(Dt ,Ht), f̂t

)
,

9 x∗ ← argmaxx∈H EI (Di , x),

10 R∗ ← R(A(Di , x
∗)), . Run learning algo.

11 Ot+1 ← Ot ∪ (Di , x
∗,R∗),

12 return OT .
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Setup

I AdaBoost with decision products as weak learners [7] has two
hyperparameters: number of iterations T and number of
product terms m.

I The small number of hyperparameters allows to set a grid on
H and pre-compute all validation errors.

I We downloaded 29 classification problems from Weka, and
instantiated D with the following features:

Number of classes K ,
dimension d ,
number of samples n,
ρ = d ′/d , where d ′ is the smallest integer such that the first
d ′ principal components of the dataset explain 95% of its
variance.
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PCA in D
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Comparing tuning strategies

We used a 5-fold CV on the 29 datasets and compared the
following strategies:

Global default Always use the hyperparameter that minimizes the
average error over the meta-train problems.

Collaborative default Do one iteration of SCoT only: fit a GP on
the meta train problems and take, for each meta-test
problem, the hyperparameter with the best posterior
mean.

Separate surrogate tuning Use independent two-dimensional GP
for each meta-test problem,

SCoT Use all available information in a single GP.

Random search It was shown to perform well in such settings [3].
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Comparing average meta-test errors
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Comparing average meta-test rankings
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Conclusions

I SCoT performs hyperparameter tuning using information
gathered with the same algorithm on other datasets.

I It is a novel Bayesian optimization algorithm, which targets a
function up to a monotone transformation.

I We are currently performing experiments with MLPs and more
statistical features.

I Future work should address asynchronous tuning, feature
construction, and scalable surrogate models, closing the gap
to a fully automatic collaborative tuner!
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Thanks for your attention

20/23



References I

J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio.
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