Mass measurement in $H \rightarrow \gamma\gamma$ in ATLAS

Yohei Yamaguchi (The University of Tokyo) on behalf of the ATLAS Collaboration
Higgs Hunting 2013
25th July 2013

Higgs couplings paper: https://cds.cern.ch/record/1559924
Higgs to Diphoton conf. note: https://cds.cern.ch/record/1523698
Introduction

- Higgs discovery in July 2012 \rightarrow ATLAS measures its properties
- m_H is measured in $H \rightarrow \gamma\gamma$ and $ZZ \rightarrow 4l$ channels
- $H \rightarrow \gamma\gamma$ channel has an excellent resolution on m_H
 - narrow mass peak
 - 80 (2011, 7TeV) + 395 (2012, 8TeV) expected signal events
• Event selection and categorization
 – 2 tightly identified and isolated photons ($E_T>40/30$ GeV, $|\eta|<2.37$ w/o crack)
 – 10 (7TeV) and 14 (8TeV) categories: better mass determination ~ 10%

• Signal modeling
 – function = CrystalBall + Gaussian
 – mass resolution is 1.6 GeV on average and varies ~ 1 GeV according to photon conversion status and η region

• BG modeling
 – BG is obtained from fit to $m_{\gamma\gamma}$ distribution in data
 – function is different for each category (e.g. 4th order Bernstein polynomial for inclusive)

• Profile likelihood
 – likelihood is calculated from (S+B) fit to $m_{\gamma\gamma}$ distribution

$$-2 \ln \lambda(m_H) = -2 \ln \frac{L(m_H, \hat{\mu}, \hat{\theta})}{L(\hat{m}_H, \hat{\mu}, \hat{\theta})}$$

m_H: Higgs mass, μ: signal strength (free)
θ: Nuisance Parameters
Red line shows $\text{H} \rightarrow \gamma\gamma$ results

$m_H = 126.8 \pm 0.2 \text{ (stat)} \pm 0.7 \text{ (syst)} \text{ GeV}$

- Statistical uncertainty is smaller than systematic uncertainty
- Dominant systematics sources are photon energy scale uncertainties
- Systematics on the angle reconstruction is small
 - thanks to the MVA based vertex selection using “photon pointing” and tracks

$m_H = 126.8 \pm 0.2 \text{ (stat)} \pm 0.7 \text{ (syst)} \text{ GeV}$

- “Method” 0.4 GeV (next slide)
- “Material” 0.4 GeV (next-to-next slide)
- PreSampler 0.1 GeV Energy scale uncertainty of the presampler
- Other 0.4 GeV e.g. Difference of lateral leakage between electrons and photons, Uncertainty of direction of the photons
Final calorimeter energy scales are obtained from a comparison of \(Z \rightarrow ee \) line-shape between data and MC.

\(Z \rightarrow ee \) line-shape in 2011 data
\((E_T > 25 \text{ GeV}, |\eta| < 2.47)\)

- **Template Method**
 - Correction factors (\(\alpha \)) are applied to data
 - \(\alpha \) is determined such that \(m_{ee} \) shapes in data agree with the MC histograms

\[
E_{\text{Data}}' = \frac{E_{\text{Data}}}{1 + \alpha}
\]

- **Uncertainty Sources**
 - QCD di-jet contamination
 - Closure test
“Material” Systematics 0.4 GeV

- Energy scales of photons use extrapolation electron \rightarrow photon
- If Geant4 material mapping is different from actual geometry, there is a mis-calibration for photons
 - shower development of photons is different from electrons

- Studies for material estimation
 - Hadron interaction
 - Calorimeter shower shape
 - ...

Radiation length

$|\eta|$

nominal geometry

material uncertainty

Nominal geometry

Geometry with different material budget

Energy scale comparison

Mass systematics due to material uncertainties 0.4 GeV
• Large μ and narrow mass peak are measured in observed data set
• Affect on mass measurement?
 • $\mu = 1.6 \pm 0.3$

- m_H and μ are not correlated in $H \rightarrow \gamma\gamma$ channel

- The best fit value of mass resolution in observed $H \rightarrow \gamma\gamma$ resonance is narrower than expected by 1.8σ
 - σ: uncertainty of mass resolution
 - Toy MC study shows mass resolution doesn’t have influence on m_H measurement
Summary

- $H \rightarrow \gamma\gamma$ channel shows m_H:

 $m_H = 126.8 \pm 0.2\,(\text{stat}) \pm 0.7\,(\text{syst})\,\text{GeV}$

- Dominated by systematic uncertainties
- Dominant systematics come from photon energy scale

Future plan

- New detector geometry
 - Updated by studies of material estimation
 - Improve the description of the $Z \rightarrow \text{ee}$ line-shape
- Improvement on intercalibration of each calorimeter layer
 - Reduce systematics on the presampler energy scale
<table>
<thead>
<tr>
<th>Category</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive</td>
<td>4th order Bernstein polynomial</td>
</tr>
<tr>
<td>Unconverted central, low p_{Tt}</td>
<td>exponential of 2nd order polynomial</td>
</tr>
<tr>
<td>Unconverted central, high p_{Tt}</td>
<td>single exponential</td>
</tr>
<tr>
<td>Unconverted rest, low p_{Tt}</td>
<td>4th order Bernstein polynomial</td>
</tr>
<tr>
<td>Unconverted rest, high p_{Tt}</td>
<td>single exponential</td>
</tr>
<tr>
<td>Converted central, low p_{Tt}</td>
<td>exponential of 2nd order polynomial</td>
</tr>
<tr>
<td>Converted central, high p_{Tt}</td>
<td>single exponential</td>
</tr>
<tr>
<td>Converted rest, low p_{Tt}</td>
<td>4th order Bernstein polynomial</td>
</tr>
<tr>
<td>Converted rest, high p_{Tt}</td>
<td>single exponential</td>
</tr>
<tr>
<td>Converted transition</td>
<td>exponential of 2nd order polynomial</td>
</tr>
<tr>
<td>Loose high-mass two-jet</td>
<td>single exponential</td>
</tr>
<tr>
<td>Tight high-mass two-jet</td>
<td>single exponential</td>
</tr>
<tr>
<td>Low-mass two-jet</td>
<td>single exponential</td>
</tr>
<tr>
<td>E_T^{miss} significance</td>
<td>single exponential</td>
</tr>
<tr>
<td>One-lepton</td>
<td>single exponential</td>
</tr>
</tbody>
</table>
Comparison with $H \rightarrow ZZ \rightarrow 4l$

- Likelihood as a function of the mass difference, $\Delta m_H = m_H^{\gamma\gamma} - m_H^{4l}$
- The common mass m_H is profiled over
- The signal strength parameters $\mu_{\gamma\gamma}$ and μ_{4l} can be changed independently

\[\Delta m_H = 0 \] hypothesis by more than observed in the data is found to be at the level of 1.5% (2.4σ)