Search for the bb decay of the Standard Model Higgs boson in ATLAS

Higgs Hunting, 26th July 2013

Jason Sang Hun Lee, Osaka University
On behalf of the ATLAS Collaboration
Introduction

Full 2011 (4.7 fb\(^{-1}\) @ 7 TeV) and 2012 (20.3 fb\(^{-1}\) @ 8 TeV)

ATLAS-CONF-2013-079

talk outline:
- Event Selection
- Background Modeling
- Diboson fit results
- Higgs fit results
- \(ttH, H \to bb\) summary

See Inês Ochoa talk for more on details about the VH analysis
Analysis strategy

Events categorised by $V p_T$ to boost sensitivity

Additional categories used to determine backgrounds

- number of leptons (0, 1, 2)
- number of jets (2, 3)
- number of b-tagged jets (1, 2)
- p_T bins (at 0, 90, 120, 160, 200 GeV intervals)

The main backgrounds are determined in the following regions

<table>
<thead>
<tr>
<th>Lepton</th>
<th>p_T Bins</th>
<th>Signal</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Event Selections - 2 lepton

Trigger - single and di-lepton
Leptons - 1 medium and 1 loose leptons
Missing Transverse Momentum < 60 GeV
Mass cut on Z boson - $83 < m_{ll} < 99$ reduce tt

boson p_T^V is vector sum of the two leptons

Analysis Selections of Jets

- $p_T > 20$ GeV & $|\eta| < 2.5$
- at least 2 jets
- leading jet $p_T > 45$ GeV
- 2 b-tagged jets (70% efficiency each jet, event efficiency is ~50%)

3 types of lepton identification increasing in purity

- **Loose**
 - $p_T > 10$ GeV
 - electrons $|\eta| < 2.47$ & muons $|\eta| < 2.7$
 - impact parameter
 - basic quality requirements
 - track isolation

- **Medium**
 - $p_T > 25$ GeV
 - electrons - additional track quality and the shower shape
 - muons - $|\eta| < 2.5$

- **Tight**
 - tighter track isolation
 - calorimeter isolation
 - electrons - more stringent quality requirements
Event Selections - 1 lepton

Trigger - single lepton or Missing E_T (20% increase for muons)

Leptons - 1 tight and no loose leptons

Missing Transverse Momentum > 25 GeV

Transverse Mass < 120 GeV \[\text{select W} \]

Transverse Mass > 40 GeV \[\text{reduce multijet} \]

Veto jets - \(p_T > 30 \text{ GeV} \& |\eta| > 2.5 \) \[\text{reduce tt} \]

\(\text{boson } p_T^V \) is magnitude of the vector sum of the lepton and Missing E_T

Analysis Selections of Jets

- \(p_T > 20 \text{ GeV} \& |\eta| < 2.5 \)
- at least 2 jets
- leading jet \(p_T > 45 \text{ GeV} \)
- 2 b-tagged jets (70% efficiency each jet, event efficiency is \(\sim 50\%) \)

\[m_T^W = \sqrt{2p_T^\ell E_T^{\text{miss}}(1 - \cos(\phi^\ell - \phi^{\text{miss}}))} \]

3 types of lepton identification increasing in purity

- Loose
 - \(p_T > 10 \text{ GeV} \)
 - electrons \(|\eta| < 2.47 \) & muons \(|\eta| < 2.7 \)
 - impact parameter
 - basic quality requirements
 - track isolation

- Medium
 - \(p_T > 25 \text{ GeV} \)
 - electrons - additional track quality and the shower shape
 - muons - \(|\eta| < 2.5 \)

- Tight
 - tighter track isolation
 - calorimeter isolation
 - electrons - more stringent quality requirements
Event Selections - 0 lepton

Trigger - Missing E_T
Leptons - no loose leptons

Missing Transverse Momentum > 120 GeV
Track-based Missing Transverse Momentum $p_T^{\text{miss}} > 30$ GeV

$$\Delta \phi (E_T^{\text{miss}}, p_T^{\text{miss}}) < \pi/2$$
$$\min[\Delta \phi (E_T^{\text{miss}}, \text{jet})] > 1.5$$
$$\Delta \phi (E_T^{\text{miss}}, b\bar{b}) > 2.8$$

reduce multijet to $< 1\%$
Veto jets - $p_T > 30$ GeV & $|\eta| > 2.5$ reduce $t\bar{t}$

boson p_T^V is Missing E_T

Analysis Selections of Jets

- $p_T > 20$ GeV & $|\eta| < 2.5$
- at least 2 jets
- leading jet $p_T > 45$ GeV
- 2 b-tagged jets (70% efficiency each jet, event efficiency is $\sim 50\%$)

fully efficient for $E_T^{\text{miss}} > 160$ GeV
B-tagging and m_{bb} mass resolution

Jet Reconstruction

- **Anti-k_t** $R=0.4$
- Pile-up correction jet-area based
- Calibrated using p_T and η dependent factors
- Corrections applied for muons in jet
- B-tagging is neural network-based
 - inputs: 3 different b-tagging methods
 - efficiency: 70% for b, ~20% for c, ~0.6% for light
 - ~2% precision achieved in the calibration analysis (intermediate p_T region)
Further Optimisations

\(\Delta R(b, b) \) optimisations
- \(\Rightarrow \) max cuts reduces background
- \(\Rightarrow \) min cuts reduces V+jets background

1 lepton channel
- \(\Rightarrow \) Missing \(E_T \) cut increase at highest bin
- \(\Rightarrow \) Min Transverse Mass cut removed in higher bins

<table>
<thead>
<tr>
<th>All Channels</th>
<th>(p_T^V) [GeV]</th>
<th>0-90</th>
<th>90-120</th>
<th>120-160</th>
<th>160-200</th>
<th>>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta R(b, b))</td>
<td>(0.7-3.4)</td>
<td>(0.7-3.0)</td>
<td>(0.7-2.3)</td>
<td>(0.7-1.8)</td>
<td>(<1.4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-lepton</th>
<th>(E_{\text{miss}}^T) [GeV]</th>
<th>(>25)</th>
<th>(>50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_W^T) [GeV]</td>
<td>(40-120)</td>
<td>(<120)</td>
<td></td>
</tr>
</tbody>
</table>

After object ID and kinematic selection, the main discriminator is \(m_{bb} \)
tt Background

Normalisation determined by fit to data

Mismodeling p_T
- PowHeg predicts too hard a p_T distribution
- correction applied at generator level

Systematic uncertainties
- 3-to-2 jet ratio: 5%
- m_{bb} shape: 5%
- top p_T correction
- c jet efficiency at high p_T^V

1 lepton, 3 jets, 2 tags

2 lepton, tt control
V+jets Background

Normalisation determined by fit to data
Mismodeling of $\Delta\phi(j,j)$:
 • 0 b-tag control
 • subtract from data all other background (except Z+jets)
 • divide by MC Z+jets
 • linear parametrisation
 • p_T^V distributions are affected
 • treated as uncorrelated
 • W+jets and Z+jets
 • no. of b jets
 • no. of jet

Systematics uncertainties:
 • flavour composition
 • 3-to-2 jet ratio
 • m_{bb} shape
 • p_T^V
Systematics

Experimental systematic uncertainties
- lepton reconstruction and PID
- Jet Energy Scale
- B-tagging
- Missing \(E_T \)
- Multijet background:
 - normalisation uncertainties 100% for the 0- and 2-lepton channels
 - 1 lepton freely floating in global fit, independently of no. of jets and tags
 - \(p_T^V \)
- Luminosity: 2.8% for 2012, 1.8% for the 2011
- Pile-up

Simulated background systematic uncertainties
- single top
 - \(\sigma \): 4-7%
 - 3-to-2 jet ratio: 5-15%
 - \(p_T^V \) shape: 5%
 - \(m_{bb} \) shape: 5-10%
- diboson
 - \(\sigma \): 5-7%
 - 3-jet to 2-jet ratios
 - \(p_T^V \): 5-60%

Signal systematic uncertainties
- cross sections: 5-7%, calculated at NNLO in QCD, applying electroweak corrections at NLO
- NLO EW corrections: ~2%, differential cross sections applied as function of \(p_T^V \) on the LO WH and ZH signals (pythia8)
- Higgs boson BR to bb: 3.3% for \(m_H = 125 \text{ GeV} \)
- **Signal Acceptance: 10% comparing pythia8, pythia6 and herwig**
The fit also adjusts the shapes of the dijet mass distributions within the constraints from the systematic uncertainties:

- **Multijet**: determined in data before final fit
- **Diboson, single top, V+light**: Normalisation constrained by theoretical uncertainties
- **tt, Vb, Vcl**: Normalisation completely determined by fit to data

Table: Global Fit

<table>
<thead>
<tr>
<th>Lepton Configuration</th>
<th>Multijet</th>
<th>Diboson, Single Top, V+light</th>
<th>tt, Vb, Vcl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 lepton × 3 pT bins</td>
<td>admixture</td>
<td>admixture</td>
<td></td>
</tr>
<tr>
<td>1 lepton × 5 pT bins</td>
<td>W+c</td>
<td>Top</td>
<td></td>
</tr>
<tr>
<td>2 lepton × 5 pT bins</td>
<td>Z+c</td>
<td>Z+b</td>
<td>Top</td>
</tr>
</tbody>
</table>

Diagrams:

- **Top**
- **W+jets**
- **Z+jets**

Norm.

Shape

Norm.
Post-fit m_{bb} distributions

2 jets 2 tags, highest p_T^V bin (> 200 GeV)

Good agreement between data and signal+background expectation

After global fit, uncertainties on the background and signal yields are 3% and 12% (Before fit, 10-13% and 13-14%)

Dominant systematic uncertainties include:

- tt modeling (m_{bb} shape, 2-3-jet ratio, p_T^V)
- Tagging efficiency for c jets
- Multijet normalisation 1 lepton
- Signal acceptance

rest of p_T^V bins in backups
Fitting Cross Check - Diboson

Diboson decay, VZ, Z→bb
- very similar decay signature
- softer p_T spectrum & lower m_{bb}
- cross section ~5 times larger

Fit to diboson peak, fixing Higgs peak to SM expectation

Fit summary for each channel and both years

\[\mu_{VZ} = 0.9 \pm 0.2 \] agrees with SM expectation of 1, corresponds to 4.8σ observed significance (5.1σ expected)

20% uncertainties with run 1 dataset
Limits

Cross section upper limits, normalised to the SM Higgs boson production cross section

Observed (expected) limits for $m_H = 125$ GeV:
- 7 TeV: 2.0 (3.3) x SM
- 8 TeV: 1.9 (1.3) x SM
- Combined: 1.4 (1.3) x SM

No significant excess is observed

This expected limit represents a 35% improvement in the analysis sensitivity
Fit to Higgs Cross Section

Fit summary for each channel and both years

ATLAS Prelim.

\[m_H = 125 \text{ GeV} \]

** signal strength parameter: \[\mu = \frac{\sigma_{\text{meas}}}{\sigma_{\text{SM}}} \]**

The fitted value of the signal strength parameter is:

\[\mu = 0.2 \pm 0.5\text{(stat.)} \pm 0.4\text{(syst.)} \]
ttH

2011 (4.7 fb\(^{-1}\) @ 7 TeV)
ATLAS-CONF-2012-135

tt semileptonic decay: \(ttH \rightarrow Wb Wb bb \rightarrow l\nu bb bb\)

Selections

- single lepton trigger
- High jet multiplicity: 4 b-jets + 2 jets
 - \(p_T > 25\) GeV
 - \(|\eta| < 2.5\)
 - b-tagging - 70% efficiency
- 1 isolated high \(p_T\) lepton
 - electron \(p_T > 25\) GeV
 - muon \(p_T > 20\) GeV
- high missing \(E_T\)
 - \(e\) channel: missing \(E_T > 30\) GeV, \(m_T > 30\) GeV
 - \(\mu\) channel: missing \(E_T > 20\) GeV, missing \(E_T + m_T > 60\) GeV
ttH fit distributions

- **Signal categories:**
 - 5 or ≥ 6 jets; 3 or ≥ 4 b-jets

- **Background categories:**
 - 4 jets; 0 or 1 or ≥ 2 b-jets
 - 5 or 6 jets; 2 b-tags

After selections; fit to data constraining systematics

Main background: tt

Main systematics: b/c tagging, tt modeling

pre-fit

post-fit
ttH results

Cross section upper limits, normalised to the SM Higgs boson production cross section

Observed (expected) limits for $m_H = 125$ GeV:

- $13.1\ (10.5) \times \text{SM}$

No significant excess is observed
Conclusions

- Results on the search for VH, H to bb on full 2011 and 2012 data
- Results on the search for ttH, H to bb on 2011 data
- 35\% gain in significance on top of the luminosity:
 - ΔR(b,b) optimisation
 - background modeling
 - experimental systematics
- Fit to diboson peak consistent with SM expectation.
- No significant excess is observed.
- Observed (expected) limit for m_H = 125 GeV is 1.4 (1.3) xSM @ 95\% CL
- The corresponding limit expected in the absence of signal is 1.3.
- The ratio of the measured Higgs-boson production strength to the SM expectation is found to be μ = 0.2 ± 0.5(stat.) ± 0.4(syst.)
- ttH, Observed (expected) limit for m_H = 125 GeV is 13.1 (10.5) xSM @ 95\% CL
Backups
Signal Acceptance

<table>
<thead>
<tr>
<th>(W/Z)(H → b¯b)</th>
<th>Cross-section × BR [fb]</th>
<th>$m_H = 125$ at 7 TeV</th>
<th>Acceptance [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-lepton</td>
</tr>
<tr>
<td>$Z \rightarrow \ell\ell$</td>
<td>12.3</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>$W \rightarrow \ell\nu$</td>
<td>107.1</td>
<td>0.2</td>
<td>3.5</td>
</tr>
<tr>
<td>$Z \rightarrow \nu\nu$</td>
<td>36.4</td>
<td>2.2</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(W/Z)(H → b¯b)</th>
<th>Cross-section × BR [fb]</th>
<th>$m_H = 125$ at 8 TeV</th>
<th>Acceptance [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-lepton</td>
</tr>
<tr>
<td>$Z \rightarrow \ell\ell$</td>
<td>15.3</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>$W \rightarrow \ell\nu$</td>
<td>130.2</td>
<td>0.2</td>
<td>3.3</td>
</tr>
<tr>
<td>$Z \rightarrow \nu\nu$</td>
<td>45.5</td>
<td>2.5</td>
<td>-</td>
</tr>
</tbody>
</table>
Model of the Fit

Likelihood of Poisson probabilities:

\[L(\mu, \theta) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k} \]

signal and background parameterisations:

\[s_i = s_{tot} \int_{\text{bin } i} f_s(x; \theta_s) \, dx \quad b_i = b_{tot} \int_{\text{bin } i} f_b(x; \theta_b) \, dx \]

test hypothesised values of \(\mu \) with a test statistics:

\[\Lambda(\mu) = \frac{L(\mu, \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta})} \]
7 and 8 TeV Limits

\[\text{ATLAS Preliminary} \]
\[\sqrt{s} = 7 \text{ TeV} \quad \int \text{Ldt} = 4.7 \text{ fb}^{-1} \]
\[\text{ATLAS Preliminary} \]
\[\sqrt{s} = 8 \text{ TeV} \quad \int \text{Ldt} = 20.3 \text{ fb}^{-1} \]
2 jet, 2 tag fitted numbers of signal and background events and the observed numbers of events

<table>
<thead>
<tr>
<th>Process</th>
<th>0-lepton</th>
<th>1-lepton</th>
<th>2-lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120-160</td>
<td>160-200</td>
<td>>200</td>
</tr>
<tr>
<td>$Z \rightarrow \nu\nu$</td>
<td>1.6</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>$Z \rightarrow \ell\ell$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$W \rightarrow \ell\nu$</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>VH total</td>
<td>2.0</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>VH expected</td>
<td>11</td>
<td>5.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Top</td>
<td>159</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>W+c, light</td>
<td>22</td>
<td>5.5</td>
<td>2.8</td>
</tr>
<tr>
<td>W+b</td>
<td>30</td>
<td>10</td>
<td>6.1</td>
</tr>
<tr>
<td>Z+c, light</td>
<td>24</td>
<td>8.1</td>
<td>5.2</td>
</tr>
<tr>
<td>Z+b</td>
<td>226</td>
<td>71</td>
<td>39</td>
</tr>
<tr>
<td>WW</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>VZ</td>
<td>26</td>
<td>11</td>
<td>10.3</td>
</tr>
<tr>
<td>Multijet</td>
<td>4.8</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Total Bkg.</td>
<td>491</td>
<td>141</td>
<td>72</td>
</tr>
<tr>
<td>Data</td>
<td>502</td>
<td>143</td>
<td>90</td>
</tr>
<tr>
<td>S/B</td>
<td>0.004</td>
<td>0.008</td>
<td>0.02</td>
</tr>
</tbody>
</table>
3 jet, 2 tag fitted numbers of signal and background events and the observed numbers of events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120-160</td>
<td>160-200</td>
<td>>200</td>
</tr>
<tr>
<td>$Z \rightarrow \nu \nu$</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>$Z \rightarrow \ell \ell$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$W \rightarrow \ell \nu$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>VH total</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>VH expected</td>
<td>2.7</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Top</td>
<td>169</td>
<td>44</td>
<td>13</td>
</tr>
<tr>
<td>W+c, light</td>
<td>7.2</td>
<td>2.2</td>
<td>1.3</td>
</tr>
<tr>
<td>W+b</td>
<td>12</td>
<td>4.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Z+c, light</td>
<td>6.3</td>
<td>2.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Z+b</td>
<td>59</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>WW</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>VZ</td>
<td>3.7</td>
<td>1.8</td>
<td>2.3</td>
</tr>
<tr>
<td>Multijet</td>
<td>3.1</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Total Bkg.</td>
<td>260</td>
<td>82</td>
<td>40</td>
</tr>
<tr>
<td>Data</td>
<td>287</td>
<td>59</td>
<td>40</td>
</tr>
<tr>
<td>S/B</td>
<td>0.002</td>
<td>0.004</td>
<td>0.009</td>
</tr>
</tbody>
</table>
0 lepton, 2 jet 2 tag
1 lepton, 2 jet 2 tag
2 lepton, 2 jet 2 tag

ATLAS Preliminary

1. $\sqrt{s} = 7$ TeV, $L_{int} = 4.7$ fb$^{-1}$
2. $\sqrt{s} = 8$ TeV, $L_{int} = 20.3$ fb$^{-1}$

2 lepton, 2 jets, 2 tags, $p_T < 90$ GeV

![Graph](image_url)

$\frac{\text{Events}}{\text{Data/MC}}$ vs m_{bb} [GeV]
0 lepton, 3 jet 2 tag
1 lepton, 3 jet 2 tag
2 lepton, 3 jet 2 tag
ttH Signal
ttH Backgrounds