Introduction to SPESO

SP-ANR meeting, 15th of March 2013

Introduction to SPESO

SPESO

_

Smith-Purcell Emission @ SOleil

- · Build an SP monitor prototype for SOLEIL
- · Make systematic measurements testing various setups
- · Compare theories/codes/measurements
- · R&D towards single shot device

SOLEIL accelerators

LINAC:

Available access to e- beam (not in sorage ring)
Fresh bunches ~ every 3 min

LINAC e- beam properties

Energy: 100 meV

• Bunch duration: 1-2 ps-rms

• Transverse size: 1 mm-rms

• Repetition rate: bunch trains every 2-3 min

• Time structure:

Filling pattern in ring	Time structure in Linac	Nominal charge	Max. charge
Multi bunch 4/4 Hybrid mode	104 bunches at 352 MHz in 300 ns 104 bunches in 300 ns	4 nC/train 4 nC/train	10 nC/train 10 nC/train
Trybrid mode	+ 1 single bunch	0.5 nC/bunch	0.5 nC/bunch
8 bunches mode	2 bunches separated by 150 ns	0.5 nC/bunch	0.5 nC/bunch

Table 1 – Soleil Linac filling patterns

Predicted yield

d 3mm gwidth 40mm blaze 30 pos 2mm fwhmx 0.5mm fwhmy 1.1mm charge 600000000 blength 2ps

- Predicted yield is low
- Simulations: grating=2-3mm, bunch length 2ps FWHM, 37.5pC => ~45nJ/bunch => 4,5uJ/train

Longitudinal profile Smith-Pu

LINAC tunnel

Free space!

→ SPESO

Top up multibunch	mode Top up F S Bunch mode
104 bunches – 300	ns 3 bunches 150 ns apart
10 nC max	2 nC max

7.5° septum

Outside wall Translation stage CaV2 ...soon... J2 LT1/VI/PI.10 LT1/VI/VE.0 J1 LT1/VI/VS.3 LINAC/VI/VS.2 CaV1 LT1/VI/VS.2 LT1/VI/VS.1 LT1/VI/PI.3 LT1/VI/PI.4 LT1/VI/PI.1 LT1/VI/PI.2 **Detectors** Inside wall

Vanne d'équerre

Q-pole

Steerer

Station

écran

Charge

monitor

Pompe ionique

First installations in January 2013

Next installations planned for April 2013

(shutdown period)

- CaV1: main vacuum chamber
- CaV2: secondary chamber for grating storage/exchange
- VS3: valve for grating exchange
 - Security system to protect LINAC vacuum
- Pumps for CaV1 and CaV2 (vacuum < 10e-8 mbar)
- Motorized arm: for grating insertion
 - Security system to protect LINAC beam
- Girders for mechanical support

Next installations planned

(during users's operation period and/or august shutdown)

- THz Detectors
- Data acquisition system
- Motion stage for the detectors
- Remote grating change system
- Large quartz viewport

• ...

