UA9 project and LAL contribution

L. Burmistrov
LAL Orsay (CNRS-IN2P3)

Outline

Introduction (UA9 project)

Introduction (LUA9 project)

Geant4 simulation

Measurements

Conclusions

Functions of collimation

- Radioprotection:
intercept lost hadrons at well defined locations, (no or minimal losses and activation at other locations!)
- SC magnet integrity prevent beam loss-induced quenches of super-conducting Magnets.
- Physics reach (maximum signal/background) control background from beam halo in experiments
- Hardware integrity set passive machine protection (beam lost first at collimators)

Principle of Beam Collimation

Core
Beam propagation

Primary
halo (p)
$\xrightarrow{\text { Diffusion }}$ processes

... Two or multi stage cleaning ...

Collimating with small gaps

Crystal collimation concept

UA9 MISSION: investigate bent crystals as primary collimators in hadron colliders.

Mechanically bent crystal instead of amorphous primary deflector.

- Particles are subjected to a coherent interaction (channeling):

- reduced loss rate close to the crystal
- reduced probability of diffractive events and ion fragmentation/dissociation

BUT

- small angular acceptance $2 \times \theta_{c}$ depending on the beam energy

$$
\theta_{c}=\sqrt{\frac{2 U_{\max }}{E}}
$$

- localization of the losses on a single absorber, thanks to large deflection angle

Energy	θ_{c} [$\left.\mu \mathrm{rad}\right]$
120 GeV	18.26
270 GeV	7.30
450 GeV	9.42
3.5 TeV	3.38
7 TeV	2.39

Beam

Absorber
Halo \&
showers

Bend crystal

\rightarrow Mechanically bend
\rightarrow Use secondary curvature to tunnel the particles

Crystal vs bend crystal

$$
\begin{aligned}
& \mathrm{U}_{0}=22.7 \mathrm{eV} \\
& \mathrm{~d}=0.192 \mathrm{~nm}
\end{aligned}
$$

Unchanneled particle

Volume-reflected particle

The particles should enter parallel to the crystal lattice

Channeled particle

Bent crystal orientation

Citation: Rev. Sci. Instrum. 79, 023303 (2008); doi: 10.1063/1.2832638
View online: http://dx.doi.org/10.1063/1.2832638

Region 1 pertains the beam traversing the crystal in a nonaligned orientation: no deflection is observed.

Region 2 The channeling peak is 10^{-3} separated from the unperturbed beam by 278.2 mrad, which corresponds to the crystal bending angle measured with optical technique.

Region 3 A small fraction of the initially channeled particles
exits the channel due to an increase of the transverse energy dechanneled particles.

Region 4 The volume reflection extends over a wide angular area along the vertical axis: almost the whole beam is displaced by $10.4+/-0.5 \mathrm{mrad}$

Region 5 The particle may lose a fraction of its transverse energy and be trapped in the potential well

Region 6 volume reflection is no longer possible and the crystal is traversed by the incoming particles in a nonoriented condition, similar to region 1.

Mini-workshop UA9, LAL Parice 19 De 2012

$\sim 45 \mathrm{~m}, \Delta \mu=60^{\circ}$

SPS tests

First use of the collimator in circulations ring

UA9 layout in 2012

Non-dispersive area for measurements "far" from the collimation system
$\sim 67 \mathrm{~m}, \Delta \mu=90^{\circ}$

Crystal collimation system (in two stages)
With instrumentation for loss rate and efficiency measurement
$\sim 60 \mathrm{~m}, \Delta \mu=90^{\circ}$
 (Medipix)

 (Medipix)

High-dispersion area for measurements on offmomentum halo

Loss rate reduction in the crystal area

Extraction efficiency

Extracted beam observed with the Medipix


```
- Efficiency \(=N_{\text {deflected }} / N_{\text {crystal }}\)
Assumptions:
the number of particles intercepted by a moving object is
proportional to the loss rate downstream the object
- \(\mathrm{N}_{\text {deflected }}\) is proportional to the losses when intercepting
                                    the whole deflected beam
                            - \(\mathrm{N}_{\text {crystal }}\) is proportional to the losses when the collimator is
                                    the primary aperture
efficiency for protons: \(70 \div 80 \%\)
efficiency for Pb ions: \(50 \div 70 \%\)
```


LUA9

Successful tests on SPS makes possible use of bent crystals collimation system in LHC

Installation in beam-line B1
Several positions for Crystals (see D.Mirarchi) But only:
2 horizontal secondary collimators
1 vertical secondary collimator
Little choice for placing the detector upstream the corresponding absorber.
2 alternative positions for a vertical detector upstream the vertical absorber

1 horizontal detector to capture channeled particles before they are absorbed by the first horizontal collimator.

2 alternative horizontal detector position upstream the second horizontal collimator

- 1 horizontal crystal + 1 vertical crystal
- Detectors
- Rely on LHC standard BLM system
- +2 dedicated detectors, one per each plane (kind tbd)

Secondary beam

Absorber TCSG.B4L7.B1

- 1 suitable position for H1 Cherenkov detector
- Standard length of 1480 mm available
- Ready beam pipe
- Support for a collimator of phase 2 on beam-line 2

Dose at potential detector locations

- Dose values are averaged vertically over $\pm 5 \mathrm{~cm}$.
- The beam 1 and 2 collimator layout is not symmetric around $\pm 10 \mathrm{~m}$ from IP7: hence, due to the simple beam $1 /$ beam 2 mapping, dose artifacts occur for beam 2 (less for beam 1) in the central region.
- Compared to previous slide, annual dose values are generally lower at potential detector locations
- See next slides for more details (lateral dose profiles at individual locations)

LAL contribution

LAL contribution

\rightarrow Development, construction of the detectors
\rightarrow Cherenkov detector for proton Flux Measurements (CpFM) for LHC and SPS
\rightarrow Detector which will detect Lead ions and provide a trigger to the DAQ system (H8 test in 2015 at CERN)
\rightarrow Acceleration physics
\rightarrow Calculation of the Beam impedances (which is changes due to installation of the related systems)
\rightarrow Data analysis for SPS, LHC and H8 test.

CpFM detector

Geant 4 simulation of the CpFM (quartz properties)

$$
n^{2}(\lambda)=1+\frac{B_{1} \lambda^{2}}{\lambda^{2}-C_{1}}+\frac{B_{2} \lambda^{2}}{\lambda^{2}-C_{2}}+\frac{B_{3} \lambda^{2}}{\lambda^{2}-C_{3}}
$$

B_{1}	0.6961663
B_{2}	0.4079426
B_{3}	0.8974794
C_{1}	$4.67914826 \times 10^{-3}$
C_{2}	$1.35120631 \times 10^{-2}$
23.05.2013 L. C_{3}	97.9340025

Simulation of the Quartz fiber

23.05.2013 L. Burmistrov

Numerical aperture $=0.22=\operatorname{sqrt}\left(\mathrm{n}_{\text {Core }}{ }^{2}-\mathrm{n}_{\text {Cladding }}{ }^{2}\right)$

$$
\mathrm{n}_{\text {Core }}{ }^{2}>\mathrm{n}_{\text {Cladding }}{ }^{2}
$$

$90^{\circ}-\alpha_{\text {critical }}=\operatorname{ATan}($ Numerical aperture $)=12^{\circ}$

Total angle of acceptance is 24°

Number of p.e. as a function proton angle in the fiber

Fibers are reasonable modeled with Geant4

Separate pieces (finger + window) finger inclined by $45^{\circ}+$ idea of Luca to use the more short fingers to measure the background + fibers to transport the light 2-4 meters away from beam pipe

With 45° angle (Geom. b)

Number of the photoelectrons

28.0 -> 10 p.e. factor of 3 loses due to the fiber angle acceptance
~3 \% precision for proton counting (100 particles) can be achieved

Very first measurements done at LAL

Geometry of the experiment (1)

23.05.2013 L. Burmistrov
$5 \times 5 \times 100 \mathrm{~mm}^{3}$ well polished quartz bar Connected to the Burle MCP-PMT (XP85012)
We use CARGILLE OPTICL GEL (CODE 0607) to improve the light contact between MCP-PMT and quartz finger.

The bar is fixed with 7 teflon rods with arrow-headed ends (to decrease the contact surface with quartz)
All this structure based inside the box

Geometry of the experiment (2)

Planacon MCP-PMT photon detector (XP85012)
Model

Window material
Photocathode
MCP pore diameter
MCP pore length to diameter ration
Initial anode structure
Active area
Open-area-ratio
Collection efficiency

XP85012
UV-Glass, Schott 8337B or equivalent

> Bialkali
> $25 \mu \mathrm{~m}$
> $40: 1$
8×8 array, $5.9 / 6.5 \mathrm{~mm}$ (size $/$ pitch)
$53 \times 53 \mathrm{~mm}^{2}$
80 \%
50 \%

4 neighbor channels are grouped in to the one.
$4 \times 4=16$ channels MCP-PMT
Operation voltage of the MCP-PMT: -2.33 kV corresponds to 5.0 * 10^{5} gain

Geometry of the experiment (3)

PMT $5 \times 17 \mathrm{~cm}^{3} \quad$ H.V. Divider $5.8 \times 9.5 \mathrm{~cm}^{3}$

Two $50 \times 50 \times 15 \mathrm{~mm}^{3}$ plastic scintillators
Wrapped in aluminum foil and then shielded from the light by the black tape

Attached to the 56 AVP 03 A PMT tube

Assemble two triggers: TOP and BOTTOM

Geometry of the experiment (4)

23.05.2013 L. BurmistroAll the detectors has been installed in the light tight box

Measurements (1)

All events

Coincidence between top and bottom triggers

Measurements (2)

Number of detected photo electrons

We measure 3.6 p.e. per muon (8.5 p.e. with simulation)

Conclusions

Collimation concept based on the bending crystal looks very promising option for the LHC.

CpFM detector is going to be used to control the deflected (channeled) beam and measure the number of protons

We started development of such a device.

First test at LAL of the quartz detector for the proton flux measurements at LHC halo has been started.

