

Last trends in scintillators development; theory and practice

A. Gektin, A.Vasil'ev

Institute for Scintillation Materials, 60 Lenin Ave., 61001, Kharkov, Ukraine

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory 1(2), 119991, Moscow, Russia

Scintillation discovery

NaI(TI) way to Crystal Ball

1949 – Nal(TI) invention 1963 – Gamma-camera prototype

Large Nal(TI) needs

Dr.Carl Swinehart In Harshaw from 1932 to 1990

R&D supervisors !!! : Prof. R.Hofstadter (Stanford)

and Dr. D.Stockbarger (MIT)

Harshaw Chemical Company

1952 – 0,5" dia growth 1974 – 21" dia growth

Scanned at the American Institute of Physics

PWO - INNOVATION AT HIGH ENERGY PHYSICS CRYSTAL

Material: **PWO** Invention: 1991

PWO milestones:

- 1992 : Crystal-2000; PWO promotion
- 1994 : Choice of PWO for CMS e-cal
- 1994-1998 : extensive R&D on PWO

1998-2000 : Preproduction of 6000 crystals

- **2001 : Start of the production**
- 2008: E-cal complete

L.Nagornaya

PbWO₄(PWO) cycle. From invention to LHC use

ISMA for International Collaborations

High Energy and Nuclear Physics

Space Missions

GLAST (USA, Sweden...)

AGILE (Italy)

Optimal scintillator

Effective = efficient + available + cheap efficient ~ 100.000 ph/MeV, 3% resolution (662 kev) available ~ size 400 mm cheap ~ 3 \$/cc

History (2008-2009) and start point:

Two ways to obtain (develop) new efficient scintillator:

- A search of new compounds (Successfully done!)
 - (-) Deep scientific search !?
 - (-) Ability to grow large crystal?
 - (-) Crystal cost?
- B modification of conventional scintillators
 - (-) Need in modification idea ?!
 - (+) Existed technologies of industrial growth!

↓ CV — luminescence Ce³⁺, Pr³⁺ etc.

TI, Eu²⁺ etc.

Most efficient new scintillators

Crystal	ρ g/cm³	Lum λ, nm	LY ph/Mev	R, % Cs ¹³⁷	Decay т, ns	Hygro- scopy	References
Cal ₂ :Eu	3.96	467	110.000	5,2	1.000	strong	Cherepy, Moses, Derenzo, Bizarri, Bourret et al. 2007 - 2012
Srl ₂ :Eu	4.55	435	115.000	2.6	1.500	strong	
Ba ₂ Csl ₅ :Eu	4.9	435	102.000	2.55	383;1.50 0	medium	
SrCsl ₃ :Eu	4,25	458	73.000	3.9	2.200	medium	Zhuravleva et al. 2012
BaBrl :Eu	5.2	413	97.000	3,4	500	low	Bizarri et al. 2011
Nal : Tl	3.67	415	44.000	5.6	230	strong	
Csl : Tl	4.53	560	56,000	6.0	980	no	
CsI : Na		420	46,000	6.4	600	low	

Maximal scintillator light yield

Scintillator efficiency:

 $N_{ph} = \beta S Q$

- E_{γ} quantum energy
- $E_{e-h} = \sim 2.4 E_g$
- **S** energy transfer efficiency
- **Q** luminescence center efficiency

 β – e-h creation efficiency is a key to the new material search and investigation

Q is ~ 1 for many typical activators, Ce, Eu etc

S is also ~1 for many hosts.

1-5% of uniform distributed activator minimizes the transfer length to 2-5 a (lattice parameters)

P.Dorenbos, SCINT, 2009

- Maximal yield for alkali halides is far from the fundamental limit .
 Some limits could be described
- Why alkali-earth (AE) halides are more efficient? The yield is close to fundamental limit
- Can we obtain (grow) scintillators with the large size and high industrial efficiency? Why not? What are the problems?
- ✓ Natural "bottle neck" (self absorption). *Overpass ways*

Outline

Spatial scales for processes in scintillators Nanoparticles as scintillators Cascade, thermalization and recombination Different types of mobilities Thermalization length for different types of crystals Interconnection of cascade, thermalization and recombination stages in binary iodides Why cascade is so effective in Csl? **Thermalization length and impurities Concluding remarks**

Spatial distribution Interaction and quenching of Electron excitons and scattering and Auger cascade Thermalization Recombination of electrons and with creation of holes excitons and Energy distribution excited states of centers Emission IVITS excitons and carriers Defect creation Trapping and releasing of carriers

Spatial track structure for e-e scattering stage (prior to thermalization)

Spatial track structure for phonon scattering stage (after thermalization) for small thermalization radius

'Real' track structure

100 nm Regions created by different virtual photons are overlapped

Spatial track structure for e-h Onsager recombination stage for small thermalization radius

'Real' track structure

Onsager radius10 nm

Regions created by different virtual photons are overlapped

3D diffusion-controlled recombination

Simulated spatial distribution of e-h pairs for a 10 keV photon event in CsI, where electrons and holes are distinguished by size and color, as indicated in legend. NWEGRIM code.

F. Gao et al., Nucl. Instr. and Meth. A (2010)

Spatial track structure for e-h Onsager recombination stage for large thermalization radius

'Real' track structure

Onsager radius10 nm

Example of structure of excited region after 30 keV electron passage

r_{e,th}=6 nm, r_{h,th}=0.6 nm (red=e, blue=h)

Bimolecular recombination of nongeminate *e* and *h* and genetic recombination of individual pairs

800

400

isage

200

sphere

30 keV electron track, r_{e,th}=20 nm, r_{h,th}=5 nm (red=e, blue=h) Bimolecular recombination in cylindrical track, the evolution of which is controlled by mobility in strong electric fields

2000

1900

20050

20100

20150

Onsage

20200

Outline

Spatial scales for processes in scintillators Nanoparticles as scintillators Cascade, thermalization and recombination Different types of mobilities Thermalization length for different types of crystals Interconnection of cascade, thermalization and recombination stages in binary iodides Why cascade is so effective in Csl? Thermalization length and impurities **Concluding remarks**

Electron-hole separation and recombination

What we have to do to improve the yield?

The goal is to concentrate e-h pairs at the distance less then Onsager radius, to minimize the volume of stochastic recombination and escape losses.

Two ways for e-h separation management

Doped/activated crystals (rare solutions)

Mixed crystals (hard solutions)

Z. Wang, Y. Xie, B. D. Cannon... 2011

Mean square of the thermalization distance $r^2 >_{E_{e0} \to E_e^{kin}} = 6 \int_{E_{e0}}^{E_{e0}} \frac{D^R(E')}{S(E')} dE'$

Spatial distribution function $f(r, l_e(E_{e0})) = \frac{3\sqrt{6}r^2}{\sqrt{\pi} l_e^3(E_{e0})} \exp\left(-\frac{3r^2}{2l_e^2(E_{e0})}\right)$

$$l_e(E_{e0}) = \sqrt{\langle r^2 \rangle_{E_{e0} \to k_B T}}$$

where thermalization length is

Thermalization length for one LO phonon branch

$$l_{e,LO}^{2}\left(E_{e0}\right) = \frac{8}{3}a_{B}^{2}\left(\frac{\tilde{\varepsilon}}{m_{e}^{*}/m_{0}}\right)^{2} \tanh\left(\frac{\hbar\Omega_{LO}}{2k_{B}T}\right)_{\hbar\Omega_{LO}}^{E_{e0}}\left(\frac{E'}{\hbar\Omega_{LO}}\right)^{2}\frac{1}{\ln\left(4E'/\hbar\Omega_{LO}\right)}\frac{dE'}{\hbar\Omega_{LO}}$$
$$= \frac{1}{24}a_{B}^{2}\left(\frac{\tilde{\varepsilon}}{m_{e}^{*}/m_{0}}\right)^{2} \tanh\left(\frac{\hbar\Omega_{LO}}{2k_{B}T}\right)\operatorname{Ei}\left(3\ln\left(\frac{4E_{e0}}{\hbar\Omega_{LO}}\right)\right),$$

We have to choose/engineer materials with

- higher effective masses in the whole relaxation region E_{kin} <E_g
- higher LO phonon energies

Two types of carrier mobilities: thermalization length (mobility of hot electrons and holes) and mobility of thermalized excitations (electrons, holes & excitons).

High-energy part of ionization track – individual electron-hole pairs and small non-overlapping clusters of excitations. Negative role of mobility: the higher thermalization length (in comparison with Onsager radius), the lower the recombination yield.

Low-energy part of ionization track – overlapping clusters of excitations. Mean distance between interacting excitations increases with increase of the mobility of excitons. Positive role of mobility: the higher the mobility, the lower the quenching of excitation due to high EE density.

"Ideal" scintillator: Low hot mobility (high yield of excitons) and high thermalized mobility (low interaction).

Binary alkali halides:

Can the yield achieve theoretical limit?

Can we improve conventional alkali halide scintillators?

Fundamental limits to Light Yield of Nal and Csl based scintillators (LY vs. E_g)

Crystal	E _g , eV	LY, ph/Mev theor.	LY, ph/Mev expim.
Nal (77K)	E 0	86.000	80.000
Nal:TI (RT)	5.0		45.000
Csl (77K)			~100.000
CsI:TI (RT)	6.1	82.000	56.000
CsI:Na (RT)			46.000

Experimental data are far from theoretic limit for NaI and CsI based crystals

✓ Pure Nal and Csl possess extremely high photon yield at LNT

[V.Sciver, 1958; Persyk, 1980; Moszynski et al, 2010]

Exciton based luminescence

Pure Csl emission

CsI:Na and CsI:TI emission

Resume : * It is possible to separate different types of emission

- * STE and defect trapped exciton emissions are dominated
- * Self trapping creates the best conditions for maximal yield
- * Other relaxation mechanisms lead to an extra efficiency losses

Non-proportionality analysis for alkali halides

Electron response of some scintillators [S. A. Payne, W. W. Moses et al., *IEEE TNS, 2011*] The high-energy decrease of the scintillator efficiency shows that significant fraction of individual electron-hole pairs are thermalized at distances larger than Onsager radius

$$p = 1 - \exp\left(-\frac{R_{Ons}}{r_{eh}}\right)$$
$$\frac{e^2}{\varepsilon R_{Ons}} = k_B T$$

- We can increase Onsager radius by decreasing the temperature. Pure CsI and Nal have yield ~ 100,000 ph/MeV at 77K ! (R_{ons,77K}=4R_{Ons,300K})
- 2) We can decrease thermalization distances by choosing of complex halides.

What is the physics of the thermalization distances decrease in this case?

Starting states for thermalization (E_{kin}<E_g)

from W. Setyawan, R. M. Gaume et al. *IEEE TNS*, 2009

Thermalization for parabolic band and one LO phonon starting from energy E_0

$$LO(E_{e0}) = \frac{1}{24} a_B^2 \left(\frac{\mathcal{E}}{m_e^*/m_0}\right)^2 \tanh\left(\frac{\hbar\Omega_{LO}}{2k_BT}\right) \operatorname{Ei}\left(3\ln\left(\frac{4E_{e0}}{\hbar\Omega_{LO}}\right)\right)$$
$$f(r, l_e(E_{e0})) = \frac{3\sqrt{6}r^2}{\sqrt{\pi} l_e^3(E_{e0})} \exp\left(-\frac{3r^2}{2l_e^2(E_{e0})}\right)$$

Spatial distribution of thermalized electrons (binary crystals)

Can we use co-doping to collect more excitations?

Nal :TI,Eu

Eu,TI – co-doping of Nal increases light yield comparing to conventional Nal:TI

CsI:Eu emission vs temperature

"Synergy" of Eu and TI co-doping in Nal crystals

Crystal	TI,	Eu,	Lum,	Decay, ns	LY,	R,
	m%	m%	nm		%	%
Nal-Tl	1·10 ⁻¹		415	230	100	6.4
NaI-Tl, Eu	1·10 ⁻¹	1.10 ⁻³	445	230 (26%)	110	6.2
				1000 (74%)		
NaI-Eu		1·10 ⁻¹	445	1000	60	9.5

- Introduce of hundred times lower Eu-concentration (10⁻³%) than TI (0.1%) leads to TI emission suppression and higher light output.
- Thus, Eu co-doping allows to get better scintillation performance of NaI:TI.
- It costs some losses at decay and claim for larger integration time.

Binary alkali halides the yield could not reach fundamental limit !

✓The maximal CsI or Nal scintillation yield corresponds to STE relaxation at LNT

✓Temperature rise leads to the STE luminescence quenching and DTE emission that lower due to transfer and stabilization losses. Eu²⁺ co-doping allows slightly increase the Nal(TI) yield only

✓ Thermalization length is much higher than Onsager radius in alkali halides – therefore geminate recombination yield is much less then unity.

✓ We can decrease thermalization distances – by choosing of complex halides

What materials are characterized by lower thermalization length? Why Alkali Earth Halides?

How thermalization length depend on material parameters?

$$l_{e,LO}^{2}\left(E_{e0}\right) = \frac{1}{24} a_{B}^{2} \left(\frac{\tilde{\varepsilon}}{m_{e}^{*}/m_{0}}\right)^{2} \tanh\left(\frac{\hbar\Omega_{LO}}{2k_{B}T}\right) \operatorname{Ei}\left(3\ln\left(\frac{4E_{e0}}{\hbar\Omega_{LO}}\right)\right),$$

We should choose materials with

- higher effective masses in the whole relaxation region $E_{kin} < E_{q}$ and
- higher LO phonon energies

Why AE halides? - Lower thermalization length in complex halides result in higher yield of geminate recombination!

Complex halides with many atoms in elementary cell (e.g. Srl₂ with 24 atoms in elementary cell)

Comparison of Csl and Srl₂ electronic structures Srl₂ thermalization length is much shorter than for CsI (and Csl anisotropic) Srl₂ 2 Mean velocities of non-relaxed electrons and holes for Srl₂ are much less than for Csl Energy (eV) Energy 0 -2 $v=5.4 \times 10^{5} \, \text{m/s}$ -4

- [1] W. Setyawan and S. Curtarolo, Comp. Mat. Sci. 49, 299 (2010).
- [2] S. Curtarolo, W. Setyawan, S. Wang et al. Comp. Mat. Sci. 58, 227 (2012).
- [3] W. Setyawan, R. M. Gaumé, S. Lam et al. ACS Comb. Sci. 13(4), 382 (2011).

For all complex halides we can obtain high yield due to high yield of geminate recombination and small bimolecular effects in non-proportionality curves

Lower thermalization length (in comparison with alkali halides) is connected with

Flat bands in whole energy thermalization region (E_{kin}<E_g) and

>much more complicated LO phonon structure (and probably strongly anisotropic mobility due to layer structure)

Renaissance of Eu-doped scintillators (history and reality)

Luminescence study 1948 - 1975		Nev sev	w demands eral new Ei	have led to discovery u-doped scintillators	
LiCl :Eu	Lehmann,1975				
Lil :Eu	Murray,1958		New scintillators		
Cal ₂ :Eu	Hofstadter, 1963		2007 - 2011		
_	Lyskovich,1970		Cal ₂ :Eu	LLNL, LBNL, USA	
CaF ₂ :Eu	Butement,1948		Srl ₂ :Eu	Cherepy, Moses et al.	
SrCl ₂ :Eu	Lehmann,1975	Ba ₂ Csl ₅ :Eu	2007 - 2009		
SrBr ₂ :Eu			BaBrl:Eu	LBNL, USA	
Srl ₂ :Eu				Bourret, Derenzo et al. 2010	
Srl ₂ :Eu	Hofstadter,1968,		BaFI:Eu		
scintillator	US Patent,3373279		SrCsl ₃ :Eu	SMRC. Tennessee. USA.	
		CsEul ₃	Zhuravleva, Melcher		
			Cs ₃ Eul ₅	et al.2010	

Pulse height spectra of record scintillators under γ¹³⁷Cs excitation

BaBrl:Eu

BaBrCl:Eu

LBNL, USA Bourret, Derenzo, Bizarri et al. 2009-2012

AE scintillator performance progress (2007→2012)

	2007 - 2009		2011 - 2012	
Crystal	LY	R, %	LY	R, %
	ph/Mev	Cs ¹³⁷	ph/Mev	Cs ¹³⁷
SrI ₂ :Eu	115.000	2.6	115.000	2.6
Ba ₂ CsI ₅ :Eu	97.000	3.8	102.000	2.55
SrCsI ₃ :Eu	65.000	5.2	73.000	3.9
BaBrI:Eu	81.000	4.8	97.000	3,4
	-	•	•	

Many AE halides possess with efficiency about fundamental limit

Selection of one (best) scintillator has to base on the technology advantages

Modification of phonon spectrum (additional phonon branches)

Modification of electron spectrum – increasing of elastic scattering

Mixed fluorides: $Ce_xLa_{1-x}F_3$

A.N. Belsky, A.V. Gektin et al., Proceedings of SCINT'95, Delft, 1995

Pulse shape and decay kinetics of Ce_xLa_{1-x}F₃

X-ray excitation (10 keV). Left – original linear scale data; right – intensity vs cation mixture rate.

Mixed halides... 20 years late

(54) SCINTILLATOR COMPOSITIONS, AND RELATED PROCESSES AND ARTICLES OF MANUFACTURE

Srivastava et al.

(45) Date of Patent: Aug. 1, 2006

GE Research

Emission spectra under UV excitation

TABLE 1			
SAMPLE	COMPOSITION	ACTIVATOR	LIGHT OUTPUT*
A** B** C D E F	$\begin{array}{c} LaBr_{3}\\ LaCl_{3}\\ La(Cl_{0.66}Br_{0.34})_{3}\\ La(Cl_{0.34}Br_{0.66})_{3}\\ La(Cl_{0.66}Br_{0.34})_{3}\\ La(Cl_{0.34}Br_{0.66})_{3}\end{array}$	$\begin{array}{c}\\\\\\ CeCl_3\\ CeBr_3\\ CeBr_3\\ CeCl_3 \end{array}$	100 68 132 126 120 138
*Relative percent for samples B–F, as compared to sample A. **Comparative samples.			

⁹ e-h separation and/or conduction band modification?

Band structure change with Ga doping.

Ga doping (shift to mixed crystals)

- * Decrease the CB bottom level
- Decrease of shallow traps influence

•

M.Nikl ...

* There are some alternative mechanisms that influence to light yield with similar or even higher rate

** Crystal performance, initial purity and activator concentration are crucial for the experimental study of phenomena

*** Decay time measurement could be more efficient for the model verification than yield test

**** We need in more detailed theoretical estimations for doped and mixed crystals

CONCLUSIONS

Modification of kinetics in scintillators

Scintillator kinetics

Essentially non-exponential decay kinetics for pure Nal

M. Moszyński, et al. Study of Pure Nal at RT and LNT, *IEEE TNS 2003*

CRYSTAL GROWTH,

RAW MATERIAL,

TARGET PRICE

FOR ALKALI-EARTH HALIDES

Two ways to increase industrial output

1. Increase of crystal / crucible diameter

Czochralski

 ✓ increased power input
✓ melt turbulences

2. Lengthening of crystal / melt height

VGF

 increased interaction with ampoule
increasing melt

convection

P.Rudolf, IWCGT 2008

Continuous growth procedure

Nal(TI) crystal continuous growth

From Principles to Practice

Nal(TI) Industrial growth

Hygroscopicity is not a problem!

Si – large size crystal growth

Si - industry is an example of efficient and cost reasonable crystals production

Crystal purity - crystal quality

Growth "chemistry" $MeO + 2HI \iff Mel_2 + H_2O$ $2MeO + C_2I_4 \iff 2Mel_2 + 2CO$ $2MeO + CI_4 \iff 2Mel_2 + CO_2$ $2MeO + 2I_2 \iff 2Mel_2 + O_2$ $MeO + CI_4 \iff Mel_2 + CO + I_2$ $MeO + I_2 + CO \iff Mel_2 + CO_2$

IR spectra of Srl₂:Eu

Peaks demonstrate oxygen impurities inside

Current prices for halides powder

Product	Producer	Price
Srl ₂	Russia USA India	4N \$1200/kg 4N \$3500/kg 2N \$1300/kg
Eul ₂ *	Russia USA	4N ~ \$8000/kg 4N ~ \$20000/kg
BaBr ₂	Russia	4N ~\$1000/kg
Bal ₂	Russia	4N ~\$1000/kg
Csl	USA Germany Ukraine	5N \$150/kg 5N \$160/kg 5N \$150/kg

*Eu₂O₃ price 3500-4500/kg (base for Eul₂)

Current prices

Target price estimation for hydrated AE halides

Product	Price per
name	anhydrous
Srl ₂ hydrate	\$220-270/kilo
BaBr ₂ hydrate	\$150-200/kilo
Bal ₂ hydrate	\$150-200/kilo

Srl₂. Raw material cost depending on purity

(Lab level)

■ 5,8

99,9

4,5

99,95 Purity, % 2.6

100

Srl₂:Eu. Energy resolution vs raw material purity

Crystal cost structure (Si)

68% - raw material

10% - crucible

8% - system cost

4% - labor cost

4% - power

6% - other

Oxides 20% - crucible

17% - power

2010 prices

Natural "bottle neck" (self-absorption)

and overpass ways

Self-absorption

Self-absorption due to small Stokes shift is the key problem for large bulk Eu doped scintillator use

This is a typical for all Eu doped crystals !!!

Self-absorption lead to the low transparency and scintillator efficiency loss

E. Bourret, S. Derenzo et al., 2009, 2010, 2011

Crystal	Stokes shift, eV	
Alkali halides		
Nal (TI)	1.35	
Nal (Eu)	0.8	
CsI (TI)	1.93	
CsI (Na)	2.07	
Csl (In)	1.83	
CsI (Eu)	0.8	
Alkali-earth halides		
Srl ₂ (Eu)	0.15	
Cal ₂ (Eu)	0.30	
Ba ₂ Csl ₅ (Eu)	0.15	
CsSrl ₃ (Eu)	0.55	
BaBrl (Eu)	0.40	

AE scintillator have a small Stokes shift and low transparency

Light collection for high (0.01 cm⁻¹) and low (0.5 cm⁻¹) transparent crystals

V.A. Tarasov, ISMA, 2011

Resume: Bulk Eu-doped scintillator could not be efficient scintillators

Combined (phoswich) detectors as a way to increase scintillator efficiency

Gamma registration efficiency at 0.06 - 2.65 MeV for 0.5 cm thick Srl₂(Eu) combined with 10 cm Nal(Tl)

Light collection coefficient for Srl_2 :Eu and Srl_2 (Eu)+Nal(TI) phoswich detectors 4 cm thickness

Phoswich detector scheme

Signal separation due to decay time difference

Srl ₂ :Eu 1	1200ns
Nal : TI	230ns
BaBrl :Eu	500ns
CsBa ₂ I _{5:} Eu	383; 1200ns
Csl:Tl	980ns

V.A. Tarasov, ISMA, 2012

Conclusions

✓ The last years scintillators developments significantly upscale our vision of the perfect scintillator.

 Practical needs rise up theoretical studies and view to the fundamental process in radiation absorptions and primary stages of excited states relaxation (evolution).

✓ Theoretical simulations allow to select the process "skeleton" to make new material search more predictable.

✓ Next years forecast –

- community has to select two-three best candiated for the technology development
- we need in criteria for the best scintilaltors selection

THANK YOU FOR ATTENTION!