

Lumi section: 575

1

Photon physics at CMS

03/12/2013 - LAL, Orsay

Nicolas Chanon - ETH Zürich

Introduction

Why photon physics at hadron colliders?

- Photon measurements: important tests of perturbative QCD
- Photon data helps to constrain parton distribution functions
- γ+jets and γγ processes are background to Higgs searches and searches beyond the standard model

Photon production cross-sections

Compact Muon Solenoid (CMS) detector

Luminosity conditions

Analyses presented in this talk are using: - 5.1 fb-1 of 7 TeV data in 2011 - Up to 19.6 fb-1 of 8 TeV data in 2012 Pileup mean interaction ~21 in 2012 (~10 in 2011)

Event with 70 reconstructed vertices (special run)

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV

CMS Integrated Luminosity, pp

The **ECAL** is made of scintillating crystals of PbWO4 :

-Barrel : 36 "supermodules" with 1700 crystals each (coverage lnl<1.48)

-Endcaps : 268 "supercrystals" with 25 crystals each (coverage 1.48<ln|<3.0)

A preshower made of silicon strip sensors is located in front of the endcaps (1.65<lnl<2.6)

Energy resolution (measured
in electron test beam) :
$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E(GeV)}} \oplus \frac{b}{E(GeV)} \oplus c$$

$$a = 2.8\%$$
 stochastic term
$$b = 12\%$$
 noise term
$$c = 0.3\%$$
 constant tern

ECAL Calibration

Laser calibration:

- Correct for ECAL crystals transparency loss due to electromagnetic damage
- RMS stability after corrections 0.09% (barrel), 0.28% (Endcap)

Inter-calibrations

- Correct for response non-uniformity
- Use π⁰ and η (mass), φ-symmetry (minimum bias), W→ev (E/p)
- Precision: better than 0.5% in central barrel 7

Photon reconstruction:

- **Barrel**: take advantage of the 3.8 T magnetic field which bends the charged particles trajectories in the electromagnetic shower
- Endcap: merge contiguous 5x5-crystal matrices around the most energetic crystals
- Reconstruction efficiency 98% (outside of Barrel-Endcap gap)

ECAL

8

Electron rejection: the energy deposit should not be matched to hits in the pixel Reconstruction detector.

Converted photons:

- Start from ECAL cluster
- Track-finding proceeds inward outward [2] taking into account bremsstrahlung
- Select e+/e- pair with best vertex fit

0.2

-3

-2

-1

0

2

3

1000

80

82

84 86 88

90

92 94

98

 M_{ee} (GeV)

100

96

photon ("fake")
=> need to be reduced, and then statistically subtracted

Transverse shape of the energy deposits in the ECAL should be compatible with a single photon shower

- Measurements: Use $\boldsymbol{\eta}\text{-width}$ of the energy deposit
- Higgs searches: use MVA method

Photon identification: isolation

Particle-Flow algorithm: Aim at reconstructing all particles using information of all sub-detectors

Detector-based Isolation:

(Early analyses, mostly 2011)

 In a cone (typically ΔR<0.4) around the photon, use sum E_T of ECAL, HCAL and p_T of charged particles measured in the tracker

Particle-Flow isolation:

- No double counting of energy (tracker/HCAL)
- Better performance than detector-based isolation
- Exact photon footprint removal event-by-event

Dijet

Inc. γ

'+iet

∙Н→үү

Cross-section (pb) ⁶01 ⁷01 ^{10⁷} ^{10⁷} ^{10⁷} ^{10⁸} ^{10⁷} ^{10⁸} ^{10⁹} ^{10¹} ^{10⁹} ^{10¹} ^{10¹}

10²

10

10

10⁻²

10

Inclusive isolated photon production QCD-10-037 (Phys. Rev. D 84, 052011 (2011)), 36pb⁻¹ at 7 TeV

Photon conversion method : competitive at low E_T

Use the shape of E_T/p_T variable (two-tracks conversions only):

- E_T transverse energy measured in ECAL,
- p_T transverse momentum of the e⁺/e⁻ pair measured in tracker.

E_T/p_T

Extract the signal yield with a binned likelihood fit :

- Signal and background pdf from Monte-Carlo
- Background shape uncertainties: from isolation and cluster shape sidebands in data 13

Inclusive isolated photon production QCD-10-037 (Phys. Rev. D 84, 052011 (2011)), 36pb⁻¹ at 7 TeV

Isolation method : competitive at high ET

- Use **ISO**, the **sum of the isolation energies** measured in the ECAL, HCAL and tracker
- Signal photons have low ISO values

Extract the signal yield with an unbinned likelihood fit :

TRK

γ

jet

ECAL

- Signal and background pdf estimated from Monte-Carlo and controlled with data
- Signal shape corrected for data / Monte-Carlo

difference in $Z \rightarrow ee$ events

- Background shape constrained with shower shape sidebands in data

HCAL

Inclusive isolated photon production

 $d^{2}\sigma/dE_{T}d\eta = N^{\gamma} \cdot \mathcal{U}/(L \cdot \epsilon \cdot \Delta E_{T} \cdot \Delta \eta),$

- Isolation and conversion results are statistically combined with the BLUE method (Best Linear Unbiased Estimate)
- NLO predictions for isolated photon with JetPhox, corrected for multiple parton interaction and hadronization effects (estimated with Pythia, ~0.97%)

Agreement between data and theory in the whole η and E_T range considered

Data / theory comparison

- Measurement driven by conversion method at low E_T and by isolation method at high E_T
- Data below prediction in the low E_T region, agreeing within uncertainties
- Largest theoretical uncertainty from renormalization / factorization / fragmentation scales

LHC Photon data in PDFs

arxiv:1202.1762 (D'Enterria, Rojo)

- Including LHC photon measurements in pdf fits helps to constrain gluon pdf relatively high Q, intermediate x region
- Improve pdf uncertainty on Higgs cross-section by 20%
- See also *arXiv:1212.5511*

γ+jets triple differential cross-section QCD-11-005 (arXiv:1311.6141), 2.1fb⁻¹ at 7 TeV

- Acceptance: $E_{T\gamma} > 40$ GeV, $p_{Tj} > 30$ GeV
- Performed in 2 jet η regions and 4 photon η
- **Selection**: shower shape requirement and HCAL/ ECAL energy < 0.05
- Efficiency: >90% (IηI<0.9) to >70% (2.1<IηI<2.5)
- Measuring isolated photons with very loose isolation requirement

- Uses Photon Isolation method (sum of ECAL, HCAL, tracker isolation)
- Background from **shower shape sidebands** 18

γ+jets triple differential cross-section QCD-11-005 (arXiv:1311.6141), 2.1fb⁻¹ at 7 TeV

Comparison with theory:

- Jetphox at NLO, Sherpa with γ+jet+up to 3 extra-jets at LO

- Good agreement over 7 orders of magnitude

γ+jets triple differential cross-section QCD-11-005 (arXiv:1311.6141), 2.1fb⁻¹ at 7 TeV

- Also measured **triple differential cross**section ratios for various jet orientations with respect to the photons
- In general, **good agreement** between data and theory predictions

 $|\eta_{jet}| < 1.5, \eta_{\gamma} \eta_{jet} < 0$ $\overline{|\eta_{iet}| < 1.5, \eta_{\gamma} \eta_{iet} > 0}$ $|\eta_{jet}| < 1.5, \eta_{\gamma} \eta_{jet} > 0$ $1.5 < |\eta_i| < 2.5, \eta_\gamma * \eta_{jet} > 0$ $|\eta_{jet}| < 1.5, \eta_{\gamma} \eta_{jet} > 0$ $\overline{1.5 < |\eta_j| < 2.5, \eta_\gamma * \eta_{jet}} < 0$ $1.5 < |\eta_i| < 2.5, \eta_\gamma * \eta_{jet} < 0$ $\overline{1.5 < |\eta_i| < 2.5, \eta_\gamma * \eta_{iet} > 0}$ $|\eta_{jet}| < 1.5, \eta_{\gamma} \eta_{jet} < 0$ $1.5 < |\eta_i| < 2.5, \eta_\gamma * \eta_{iet} > 0$ $|\eta_{jet}| < 1.5, \eta_{\gamma} \eta_{jet} < 0$ $\overline{1.5 < |\eta_i| < 2.5, \eta_\gamma * \eta_{jet} < 0}$

Isolated diphoton differential cross-section

Diphoton cross-section SMP-13-001, 5.0fb⁻¹ at 7 TeV

- Kinematical range: Iη_γI<2.5, E_{T,γ1}>40, E_{T,γ2}>25 GeV, ΔR(γ1,γ2)>0.45
- Asymmetric E_T cut enhances higher order diagram contributions
- Apply **loose selection** to maximize efficiency, level-arm for the template, phase-space for background estimate
- Method: particle-flow photon isolation template

Diphoton cross-section SMP-13-001, 5.0fb⁻¹ at 7 TeV

Particle-flow photon isolation method

- Templates are purely **data-driven**:
- Signal template: random cone method
- Background template: shower shape sideband
- 2D fit in data taking into account correlations (mainly due to pileup)
- Templates reproduce data kinematics thanks to event-mixing: improves close photon candidates description

Prompt template shape EB	3%
Prompt template shape EE	5%
Fakes template shape EB	5%
Fakes template shape EE	10%
Effect of fragmentation component	1.5%
Template stat. fluctuation	3%
Selection efficiency	2-4%
Integrated luminosity	2.2%

Total ~10% systematic uncertainties 23

Diphoton cross-section: predictions SMP-13-001, 5.0fb⁻¹ at 7 TeV

Generator	ME/PS	Resumation	Born	1-frag	2-frag	Box
$2\gamma NNLO$	ME	-	NNLO	_	-	LO
DIPHOX	ME	-	NLO	NLO	NLO	(LO)
+ GAMMA2MC	ME	-	-	-	-	NLO
RESBÓS	ME	NNLL	$E_{\sigma}^{had}(\delta) < N_{\sigma}^{had}$	LO	-	NLO
$Sherpa_q$	ME+PS	LL	LO + up to 3 jets	-	-	LO

 $E_T^{had}(\delta) \le E_{T\,max}^{had} \ \chi(\delta)$

Generator level isolation: < **5 GeV is used** $\chi(\delta) = \left(\frac{1 - \cos(\delta)}{1 - \cos(R_0)}\right)^n$ Frixione isolation with n=1 and ϵ =5 GeV gives almost the same cross-section (differentially as well) $R_0 = 0.4$

2gNNLO uses Frixione isolation E_T^{iso} < f(R) f(R)→0 for R→0

D. de Florian, L. Cieri

E_{Tmax}^{had}	standard/smooth	Frag. comp. (cone)
2 GeV	< 1%	6%
3 GeV	< %	10%
4 GeV	1%	13%
5 GeV	3%	16%
0.05 рт	< 1%	8%
0.5 рт	11%	52%

Diphoton cross-section SMP-13-001, 5.0fb⁻¹ at 7 TeV

- NNLO predictions
 improve a lot the data/
 MC agreement
- **Sherpa** (up to 3 ME extra-jets) shows also a good agreement
- Still an excess in data
 at low ΔΦ (sensitive to missing higher order
 QCD effects)

H→yy searches

ETH

Eidgenössische Technische Hochschule Z Swiss Federal Institute of Technology Zu

Higgs boson channels at LHC

 10^{2} HIGGS XS WG 201 \sqrt{s} = 8 TeV σ(pp → H+X) [pb] PP-+ H (NNLO+NNLL QCD + NLO EW) - At the LHC, the main Higgs production 10<u>⊨</u> mechanism in the SM is gluon fusion followed by VBF and associated production with W,Z or tt - Higgs decay to yy: very small branching ratio, ~2.10-3 10⁻¹ Ducert 10 1 Higgs BR + Total Uncert bb WW WW hh HC HIGGS XS WG 20 ΖZ F Total 100 200 300 400 1000 80 M_H [GeV] 10⁻¹ π 0-1 gg tt gg ZZ W.Z 000000000 \overline{C} CC g g 🕰 sion : WW, ZZ fusion : W,Z 00000000 10⁻² 10^{-2} g 20202020000 tt fusion : Zγ γγ W,Z g 000000000 10⁻³ 10⁻³ 400^{W, Z bremsstrahlun} 180 200 M_H [GeV] 140 160 100 200 100 300 120

H \rightarrow yy analysis HIG-13-001, 5.1fb-1 at 7 TeV, 19.6fb-1 at 8 e.e. γ

t/W

- Look for small signal peak over large background
- Main analysis is MVA cut-based analysis and 2nd MVA analyses as cross-checks
- Select two high pt photons
- Vertexing MVA: tracks, diphoton kinematics, conversions
- Photon identification MVA to reject fake photons: shower shape and isolation

000000

- Energy regression to improve mass resolution: 1-2%

H→yy: categories

Categories:

- Defined with s/b and

resolution level MC 53 Hgg 125 GeV vs = 8 TeV L = 19.62 fb⁻¹ # of events/0.04 25 - 4 untagged, 2 VBF Gluon Fusion VBF V+H categories, 3 VH cat tt+H 20 ID Shape Systematics **Diphoton BDT** - Mass independant 15 Sensitivity from - Kinematics, vertexing, 10 mass fit. Bkgd: PhotonId output, energy resolution variables Bernstein polynomial 5 (bias <20% stat uncertainty) 0 O E di-photon BD ≥ 25000 - Data CMS Preliminary - Data CMS Preliminary 120 2500 🔶 Data S+B Fit CMS Preliminary - Data 9 450 CMS Preliminary - S+B Fit vs = 8 TeV, L = 19.6 fb⁻¹ (MVA) vs = 8 TeV, L = 19.6 fb⁻¹ (MVA) S+B Fit Bkg Fit Component S+B Fit ---- Bkg Fit Component √s = 8 TeV. L = 19.6 fb⁻¹ (MVA) √s = 8 TeV. L = 19.6 fb⁻¹ (MVA) ഹ --- Bkg Fit Component ---- Bkg Fit Component Events /1. ±1 σ o 400 ±1 σ 100 ±1 σ ±1 σ ±2 σ ±2 σ 2000 +2 σ ±2 σ BDT 3 350 350 300 300 250 BDT 0 BDT 2 BDT 1 80 1500 Cat 2 Cat 3 Cat 0 Cat 1 60 2000 200 1000 40 150Ē 1000 500 100 E 20 50Ē 120 160 140 120 160 140 120 140 160 m_{vv} (GeV) 160 120 140 m_{vv} (GeV) m_{γγ} (GeV) m_{yy} (GeV)

Exclusive channels: VBF and VH

Events / 1.5 GeV

Sensitivity to production mechanisms and Higgs-Vector boson coupling

VBF tags:

- VBF is higher $\gamma\gamma p_T$, two forward jets
- Dijet BDT using diphoton/jets kinematics
- Define two categories: s/b~0.5 and s/b~0.2

VH tags (WH, ZH production):

Two lepton categories, muon or electronOne mET category

in VBF categories ~20-50%

31

H→yy mass resolution

2.5

H→γγ MVA results

H→γγ cross-check with cut-based analysis

Compatibility of cut-based and MVA: within 1.5σ

Cut-based:

- Observed local significance above 3.9σ (3.5σ expected)
- Measure best fit µ=1.11 ±
 0.31 at 125 GeV

Mass measurement

- Mass measured with $H \rightarrow \gamma \gamma$ full dataset **125.4 ± 0.5(stat.) ± 0.6(syst.) GeV**
- Main systematics: energy scale (Z→ee), electron to photon extrapolation, linearity (45 GeV electrons => 60 GeV photons)
- Masses from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ channels are compatible within 1σ

Probing production mechanism and couplings

- The four main production mechanisms are all related to a **fermion-coupling** (top in gluon fusion loop, ttH) or to **vector boson coupling** (VBF,VH).
- $H \rightarrow \gamma \gamma$ sensitive to relative sign W and top coupling through decay loop
- Negative coupling to fermions would show up as enhanced tH production

 $BR_{BSM} = \frac{-DDM}{2}$

Exclusive searches with ttH, H \rightarrow \gamma \gamma HIG-13-015

q

- 2 Categories: hadronic and semi-leptonic ttbar decay
- Hadronic: >=5jets, including at least one b-tagged jet.
- Leptonic: >=2jets (1 b-tag), 1 electron or muon
- Low statistics: use **control sample** reverting photon identification cuts
- Very high purity selection (87% hadronic, 97% leptonic)

Spin/Parity measurement HIG-13-016

- Landau-Yang: resonance observed in $H\!\rightarrow\!\gamma\gamma$ cannot be spin 1
- Cannot measure directly spin (too many parameters in the lagrangian, not enough statistics) => Need to **test some reasonable benchmark models**
- Test spin 2+ model with minimal couplings: graviton-like coupling
- Initiated by gluon fusion or qq
- Use angular distribution: diphoton angle in the Collin-Sopper frame
- So far compatible with both hypothesis

Conclusions

Photon physics important probe of perturbative QCD

- Inclusive photon and photon+jets measurements in agreement with NLO and matched extra-jets generators at LO
- Diphoton Data/Theory predictions improved with NNLO predictions. Collinear regime still difficult.

Impact of photon on pdfs

- Inclusive photon improves uncertainty on gg→H cross-section by 20%, analysis to be repeated will full Run 1 data

H→γγ searches

- Rely on excellent ECAL calibration
- Observed local significance above 3.2σ (expected 4.2σ)
- Measure best fit **µ=0.78 ± 0.27 at 125 GeV**
- Mass measurement $125.4 \pm 0.5(stat.) \pm 0.6(syst.)$
- VBF, VH, ttH channels are investigated

BACK-UP SLIDES

Large Hadron Collider (LHC)

- Proton-proton collider at CERN, Geneva
- 27 km circumference, fully supra-conducting magnets at 100m depth
- 7 TeV center of mass energy in 2010 and 2011, 8 TeV in 2012
- Instantaneous luminosity: reached peak 7.7x10³³ cm⁻²s⁻¹

Laser monitoring

Noise in APD/VPT

Intercalibration precision

Inclusive photon: efficiency

Inclusive photon: systematics

Conversion method :

biggest uncertainty from conversion efficiency, estimated conservatively

For isolation method,

the biggest uncertainty comes from the signal and background shapes

Kink at $p_{T_1}+p_{T_2}$, not completely reproduced by Sherpa or NNLO

- NNLO predictions improve a lot the data/ MC agreement
- Sherpa (up to 3 ME extra-jets) shows also a good agreement

200

Diphoton cross-section SMP-13-001, 5.0fb⁻¹ at 7 TeV

- **NNLO** predictions improve a lot the data/ MC agreement

- **Sherpa** (up to 3 ME extra-jets) shows also a good agreement

Suppression de la composante de fragmentation

Critère Frixione pour la réduction de la composante de fragmentation dans les générateurs à gerbe partonique (PS) :

- Débris de fragmentation non colinéaire dans les générateurs PS

H→yy flowchart

H→γγ 8 TeV only

H→yy additional state

Coupling measurement

Model: EFT with the chiral lagrangian in the EW sector

- Grojean et al. [arXiv:1207.1717], Azatov et al. [arXiv:1202.3415], Kuflik et al. [arXiv: 1206.4201]...
- **Assumptions:** spin-parity 0⁺, new other states are heavy enough, EWSB possesses a custodial symmetry, no FNCN at three level with the Higgs, kinematics not affected

$$L = c_{V} \frac{2m_{W}^{2}}{v} W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{2m_{W}^{2}}{v} Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \, \bar{b}b - c_{\tau} \frac{m_{b}}{v} h \, \bar{\tau}\tau$$
$$+ c_{g} \frac{\alpha_{s}}{12 \, \pi \, v} h \, G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma} \frac{\alpha}{\pi \, v} h \, A_{\mu\nu} A_{\mu\nu} + c_{\chi} h \bar{\chi}\chi$$

- A simplified **model is recommended by the LHC Higgs Low Mass WG** [arXiv: 1209.0040], to be used by ATLAS and CMS to measure Higgs couplings
- Higgs production cross-sections and branching ratios are scaled by various parameters
- Coupling to bosons (κ_v) and fermions (κ_f):

Free parameters:
$$\kappa_{\rm V} (= \kappa_{\rm W} = \kappa_{\rm Z}), \kappa_{\rm f} (= \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\tau})$$

 $\kappa_i^2 = \Gamma_{ii} / \Gamma_{ii}^{\rm SM}$

High mass diphotons EXO-11-038, 1.1fb-1 at 7 TeV

56