EGS/Geant4 Benchmark POSIPOL LAL-Orsay, May 2007 Olivier Dadoun

R. Chehab, B. Mouton, A. Variola, A. Vivoli (LAL-Orsay)

Contents

- Alternative e⁺ polarization at ILC
- Positron production
 - Physics processes
 - EGS and Geant4 difference
- EGS & Geant4 comparison:
 - Input photon without diaphragm
 - Input photon with diaphragm
- Conclusion & prospects

Positron production: physics processes

At high energies • γ: Pair production in the nuclear field (scale with Z^2) e⁺ e⁻ : Bremsstrahlung interaction leads to more γ cascade of processes: convert high energy particles into large numbers of lower energy particles

(others processes: Compton scattering, Moller, Bhabha scattering, photoelectric interaction, positron annihilation ...)

Target

Olivier Dadoun EGS/Geant4 Benchmark

EGS and new Geant4* simulation of polarized processes

EGS (Fortran based) : Electron Gamma Shower

- Treatment of polarized extension has been developed by K. Flöttmannn, based on matrix formalism:
 - Bremsstrahlung, pair production and Compton
 - Depolarization in other processes (Bhabha(e⁺), Moller(e⁻), Rayleigh) not considered

Geant4 (C++)

- General procedure very similar to similar to EGS
 K. Flöttmannn polarized extension
- Depolarization implemented

Initial parameters

- Target material W (1.4mm thickness, Z=74)
- In the next all the simulations was done with 10⁴ photons as input
- Energy cut
 - e⁺ and e⁻ 1 MeV
 - $-\gamma$ 135 keV
- Sz is:
 - circular polarization for γ
 - linear polarization for e⁺ and e⁻

Input photon spectrum, with no diaphragm (from 1.3GeV e⁻ beam)

Input photon polarization, with no diaphragm (from 1.3GeV e⁻ beam)

Olivier Dadoun EGS/Geant4 Benchmark

7

e+ @ the exit of the target

Geant4/EGS results

		Geant4	EGS
γ	<e(mev)>(RMS)</e(mev)>	13.02 (9.65)	11.40 (9.80)
	Sz (RMS)	-0.05 (0.70)	0.01 (0.70)
0 ⁻	<e(mev)>(RMS)</e(mev)>	10.00 (6.02)	9.51 (5.74)
	Sz (RMS)	-0.30 (0.47)	-0.23 (0.43)
e+	<e(mev)>(RMS)</e(mev)>	10.16(5.53)	10.5 (5.60)
	Sz (RMS)	-0.34 (0.42)	-0.40 (0.42)

Sz comparison is not so good (20%)

Input photon with diaphragm (from 1.3GeV e⁻ beam)

Olivier Dadoun EGS/Geant4 Benchmark

Input photon with diaphragm

(from 1.3GeV e⁻ beam)

Olivier Dadoun EGS/Geant4 Benchmark

11

Geant4/EGS results

		Geant4	EGS
γ	<e(mev)>(RMS)</e(mev)>	16.50(9.60)	14.45 (10.25)
	Sz (RMS)	-0.41 (0.50)	-0.36 (0.48)
e⁻	<e(mev)>(RMS)</e(mev)>	10.82 (6.31)	10.35 (5.96)
	Sz (RMS)	-0.38(0.39)	-0.33 (0.39)0
e+	<e(mev)>(RMS)</e(mev)>	10.72 (5.67)	10.41 (5.55)
	Sz (RMS)	-0.40 (0.37)	-0.41 (0.38)

Sz for e⁺ is better, why ?

Input photon with diaphragm

(from 1.8GeV e⁻ beam)

Olivier Dadoun EGS/Geant4 Benchmark

Geant4	/EG	S results us	sing high	er energy
((from	of Incoming 1.8GeV e⁻ beam,	photon with diaphra	gm)
			Geant4	EGS
		<e(mev)>(RMS)</e(mev)>	3.55(4.56)	3.20 (4.18)
		Sz (RMS)	0.10 (0.32)	0.07 (0.28)
<15 MeV Energy selection for all particles		<e(mev)>(RMS)</e(mev)>	7.76 (4.13)	8.05 (3.93)
	e	Sz (RMS)	-0.03(0.31)	0.06 (0.26)
	e+	<e(mev)>(RMS)</e(mev)>	8.45 (3.63)	8.50 (3.68)
		Sz (RMS)	0.04 (0.28)	0.06 (0.30)
Olivier Dadoun EGS/Geant	4 Benchm	ark For all the	polarization	EGS > Geant4

EGS/Geant4 short conclusion

- For higher energies the results between EGS/Geant4 is better
 - Rayleigh cross section: negligible (polarization of this process not implemented in EGS)
 - Bhabha cross section: negligible (polarization of this process not implemented in EGS)
 - Moller still present due to the very huge tail
 - But we expected at higher energies both code give same results

Conclusion and prospects

- Need to make the simulation using a huge statistic
 - Larger energies of incoming photon (>50 MeV where Rayleigh , Bhabha and Moller will be negligible)
 - Use different material and different thickness
- Geant4 tasks
 - Implement the magnetic in the target
 - Implement the polarization in BDSIM simulation
- Thanks:

Andreas Schaelicke for very useful mails exchanges