Compton Gamma-Sources: Beam Dynamics and Performance

E. Bulyak¹ P. Gladkikh¹ M. Kuriki² T. Omori² J. Urakawa² A. Variola³

¹NSC KIPT (Kharkov, Ukraine)

²KEK (Tsukuba, Japan)

³LAL (Orsay, France)

Work supported by "Grant-In-Aid for Creative Scientific Research of JSPS (KAKENHI 17GS0210)"

Workshop on Polarized Positron Sources, Orsay, May 2007

- Comparative analysis of Compton-based sources of polarized gammas
- Study on a Compton-ring structure with a longitudinal low-beta insertion

Reference gamma sources based on linacs

- ILC undulator source: 150 GeV
- Reference Compton linac: 1.3 GeV

・ロト (周) (E) (E) (E) (E)

Outline

- Electron Beam Current
- Statistics of Recoils
- Balance of Energy in Compton Posipols
- 2 Longitudinal Low–Beta Scheme
- Summary and Outlook
 - Choice of Photon Energy

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Polarization and Yield

Advantages of Compton gamma sources:

- High energy of gammas (20...30 MeV for Compton vs 10 MeV for undulator)
- Low deflection parameter → only fundamental harmonics.
- Collimation of gammas before a conversion target.

More positrons at higher polarization rate; lower power load in the conversion target.

・ロト (周) (E) (E) (E) (E)

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

General Requirement Positron beam equals to electron beam

For the undulator source:

$$N_{\text{electrons}} = N_{\text{positrons}} = N_{\text{electrons}}^{\text{emitters}} \times C(e^{-} \rightarrow \gamma) \times C(\gamma \rightarrow e^{+})$$

For ILC undulator source $N_{\text{electrons}} = N_{\text{electrons}}^{\text{emitters}}$:

$$C(e^- \rightarrow \gamma) \times C(\gamma \rightarrow e^+) = 1$$

 $300 \times \frac{1}{200} = 1.5$ (50 % overhead)

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

General Requirement Positron beam equals to electron beam

For the undulator source:

$$N_{\text{electrons}} = N_{\text{positrons}} = N_{\text{electrons}}^{\text{emitters}} \times C(e^{-} \rightarrow \gamma) \times C(\gamma \rightarrow e^{+})$$

For ILC undulator source $N_{\text{electrons}} = N_{\text{electrons}}^{\text{emitters}}$:

$$C(e^-
ightarrow \gamma) imes C(\gamma
ightarrow e^+) = 1$$

 $300 imes rac{1}{200} = 1.5$ (50 % overhead)

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

General Requirement Positron beam equals to electron beam

For the undulator source:

$$N_{
m electrons} = N_{
m positrons} = N_{
m electrons}^{
m emitters} imes C(e^- o \gamma) imes C(\gamma o e^+)$$

For ILC undulator source $N_{\text{electrons}} = N_{\text{electrons}}^{\text{emitters}}$:

$$egin{aligned} C(\mathrm{e}^- &
ightarrow \gamma) imes C(\gamma
ightarrow \mathrm{e}^+) &= 1 \ && 300 imes rac{1}{200} &= 1.5 \end{aligned}$$
 (50 % overhead)

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

General Requirement: Compton Average current of positrons equals to electrons'.

Compton sources require accumulation of positrons. Average current:

$$I_{\text{positrons}} = I_{\text{electrons}} = 45 \,\mu\text{A}$$

$$I_{electrons}^{emitters} = \frac{I_{positrons}}{C(e^{-} \rightarrow \gamma)C(\gamma \rightarrow e^{+})L}$$

with *D* duty factor $\left(= \frac{\text{laser pulse duration}}{\text{cycle duration}} \right)$

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

General Requirement: Compton Average current of positrons equals to electrons'.

Compton sources require accumulation of positrons. Average current:

$$I_{\text{positrons}} = I_{\text{electrons}} = 45 \,\mu\text{A}$$

$$I_{\text{electrons}}^{\text{emitters}} = \frac{I_{\text{positrons}}}{C(e^- \to \gamma)C(\gamma \to e^+)D}$$

with *D* duty factor $\left(= \frac{\text{laser pulse duration}}{\text{cycle duration}} \right)$

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Laser Pulse Parameters

Electron \rightarrow gamma conversion

parameter / model	ILC/YAG	CLIC	ERL
Laser pulse energy (J)	17.76	0.592	6.0
Laser pulse radius (μ m)	5	5	5
Laser pulse length (mm)	0.9	0.9	0.24
Crossing angle (deg)	8	8	8
Max yield (1/ <i>e</i> /J)	0.18	0.18	2.27
Reduction factor, simul	0.21	0.16	0.091
Conversion /J	0.04	0.03	0.2
Total Conv	0.67	0.017	1.24

・ロ> < 回> < 回> < 回> < 回> < 回

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Beam Current Limits in Compton Sources

Min current and duty factor

parameter / model	ILC/YAG	CLIC	ERL
Total $e^- \rightarrow$ gamma conv	0.67	0.017	1.24
$Gamma{\rightarrow}e^+ \ conv$	0.01	0.01	0.01
Min current $\times D$ (A)	0.0067	0.265	0.0036
Nominal current (A)	3.0	15.6	0.026
Min duty factor	$2.2 imes 10^{-3}$	$1.7 imes 10^{-2}$	0.14

Summary on 'Beam Current – Duty Factor'

- All considered sources fit the requirements
- The ring-based sources allow much more manoeuvre with the temporal shape of the beam and the laser power

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Beam Current Limits in Compton Sources

Min current and duty factor

parameter / model	ILC/YAG	CLIC	ERL
Total $e^- \rightarrow$ gamma conv	0.67	0.017	1.24
Gamma→e ⁺ conv	0.01	0.01	0.01
Min current $\times D$ (A)	0.0067	0.265	0.0036
Nominal current (A)	3.0	15.6	0.026
Min duty factor	$2.2 imes 10^{-3}$	$1.7 imes 10^{-2}$	0.14

Summary on 'Beam Current – Duty Factor'

- All considered sources fit the requirements
- The ring-based sources allow much more manoeuvre with the temporal shape of the beam and the laser power

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Steady Operation of Source

Balance must be keeping:

- Energy
- Number of electrons
- Entropy

Electron-to-laser photon collisions produce entropy

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Statistics of Scattering

Recoil spectrum for single IP pass with x average scattered photons

Probability of Scattering *n* Photons

$$P(x,n) = \frac{x^n \exp(-x)}{\Gamma(1+n)}$$

Fraction of Noninteracted Electrons

$$P(x,0) = \exp(-x)$$

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Recoiled Spectra. Analytics and Simulations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Energy Spread is Main Drawback

Linac (undulator) Increase of the energy spread by $\Delta E_e \approx \sqrt{x} \times \langle E_\gamma \rangle = 170 \text{ MeV}$ (if scattered gammas are uncorrelated)

Ring The ring must comprise spread up to

$$rac{\Delta E_e}{E_e} pprox \sqrt{rac{7 E_{ ext{laser}} \gamma}{10 E_0}} pprox 6\%$$

ERL Recovery of the energy from a beam with the large spread should be a challenging problem.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Entropy and Power Consumption: Compton Linac The system initiated Compton POSIPOLs (T.Omori *et al* 2003)

Energy losses

• Linac's beam current $I_{e^-}^{emit} = \frac{I_{e^+}}{C(e \rightarrow \gamma) \times C(\gamma \rightarrow e^+)} = \frac{45 \times 10^{-6}}{1.24 \times 0.01} \approx 3.6 \text{ mA}$ • The beam power 3.6 mA × 1.3 GeV = 4.7 MW

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Entropy and Power Consumption: ERL A. Variola, 2006

Energy losses

- Emission of gammas: $P_{\gamma} = \frac{I_{\text{pos}} \langle E_{\gamma} \rangle}{C(\gamma \rightarrow e^+)} = 67.5 \text{ kW}.$
- Synchrotron radiation $P_{\text{synch}} = I\Delta E_{\text{s}} = 0.03 \times 87.5 = 2.6 \text{ kW}.$
- Beam losses:

$$P_{\text{beam}} = IE_b = D \times 2 \dots 3 MW.$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Entropy and Power Consumption: Ring X-ray: Z.Huang, R.Ruth 1998, Gammas: S.Araki *et al* 2005

Energy losses

- Emission of gammas the same $P_{\gamma} = 67.5 \text{ kW}.$
- Significant synchrotron losses:
 - Circulating current up to a few Amperes;
 - Radiation cooling requires wigglers;

 $P_{\text{synch}} = I_{e^-} \Delta E_s = 0.1 \dots 0.5 \text{ MW}.$

・ロト (周) (E) (E) (E) (E)

• Beam losses: negligible.

Electron Beam Current Statistics of Recoils Balance of Energy in Compton Posipols

Problems of Compton Sources ERL and Ring most promising

ERL

- Bunch parameters determined by injector
- Required rather high beam current (for ERL)
- High power losses (with the beam)
- Effective energy recuperation

Ring

- Bunch parameters determined by the ring
- Required moderate beam current (for rings)
- Moderate power losses (with SR)
- Large energy spread in transverse dynamics

・ロト (周) (E) (E) (E) (E)

POSIPOL 2006 lines up options for ILC and CLIC Louis Rinolfi, CERN, POSIPOL chair

CERN Courier, 9 vol.46 (2006)

... For the Compton scheme, the main recommendations were the publication of the design of a Compton ring with a chicane and with optimization of the energy of the Compton photons, ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Ring: A Method to Reduce Spread Longitudinal Low- β Insertion (Junji Urakawa, 2006)

Idea: Strong Focusing

- Emittance (not spread) is conserved.
- Balance 'heating-cooling' at IP determines the spread.
- Chicane+RF transforms the emittance.
- RF+chicane restores the emittance.

・ロト (周) (E) (E) (E) (E)

Longitudinal Low- β

Results - It Works

 Negative phase slip beyond LLBS: More energetic particles circulating faster.

・ロト (周) (E) (E) (E) (E)

 High rf–voltage necessary.

E.Bulyak et al Compton Sources: Dynamics and Performance

Longitudinal Low- β : Simulation CLIC–20

Parameters

- Beam energy 1.06 GeV
- Max energy of gammas 20 MeV
- RF frequency 1.875 GHz
- RF voltage 150 MV
- Chicane $\lambda = 0.98$
 - magnet length 1.3 m

・ロト (周) (E) (E) (E) (E)

- gap length 1.2 m
- field strength 1 T

• Laser pulse energy 0.6 J

E.Bulyak et al Compton Sources: Dynamics and Performance

Choice of Photon Energy

ERL Gammas' Energy 30 MeV vs. 20 MeV

ERL Recoil Spectra

30 1.30 GeV, Recoil 26 \pm 18 MeV

20 1.06 GeV, Recoil 17 \pm 12 MeV

ヨト イヨト ヨヨ わえで

Recoils shrink quadratically

Choice of Photon Energy

Ring Gammas' Energy 30 MeV vs. 20 MeV

CLIC YAG Rings

Beam energy (GeV)	1.06	1.301
Max gammas energy (MeV)	20	30
Cycle (turns)	2546/14888	2546/14888
Max ${\it C}({ m e}^- o \gamma)$ /pass	0.1	0.1
Yield (gammas/cycle)	112	85
Particle losses /cycle	0	1.5 %

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Choice of Photon Energy

Summary. Compton sources

Compton gamma sources

- Advantages:
 - High polarization of positrons attainable (\gtrsim 90%).
 - Moderate power density at the positron converter.
 - Independent of the main linac operation.
- Issues to be studied:
 - Large energy spread and affect upon transverse motion.
 - Choice of an optimal energy of gammas (compromise between gamma- and positron conversion).
- It seems reasonable to study ERL and Ring Compton sources in parallel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Minute details

Chicane Positron Yield Spreads and Polarization

Phase Transformation in Chicanes

Parameter

$$\begin{split} \lambda &= \eta_c U = \frac{4 e V_{\rm rf} F_{\rm rf} R_0}{c E_e} \\ &\times \left[\frac{d R_0 \left(d D + R_0^2 - d^2 \right) \sqrt{1 - (d/R_0)^2}}{\left(R_0^2 - d^2 \right)^2} \right. \\ &+ \arcsin \frac{d}{R_0} \right] \lesssim 1 \end{split}$$

Minute details

Chicane Positron Yield Spreads and Polarization

Positron Yield

Рис. 1.23. Дифференциальное сечение образования пар в свинце в зависимости от энергии частиц пары для различных энергий налетающих ү-квантов в естественных единицах.

Positron production cross section

• Preselection efficiency increases with decreasing the positron collection threshold

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶

Minute details

Chicane Positron Yield Spreads and Polarization

Preselection and Polarization

Angular and energy spreads will decrease the yield of positrons but not polarization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □