
StratusLab: Darn Simple Cloud
Charles (Cal) Loomis & Mohammed Airaj

LAL, Univ. Paris-Sud, CNRS/IN2P3
29 August 2013

2

What is it?
 Complete IaaS cloud distribution
 Open source (Apache 2 license)
 Works well for production private

and public IaaS clouds

Focus: Darn Simple Cloud
 Simple to install on commodity

hardware
 Simple to use, from any client

machine
 Scales down as well as up!

Infrastructure as a Service (IaaS)
+ Customized environment
+ Dynamic (scalable) provisioning
+ Easy access

− Variety of APIs and interfaces
− Image creation is tedious
− Single machine granularity

StratusLab

3

Why are cloud technologies useful?

Users
 Custom environment: no more porting, revalidation of code
 Pre-installed and configured applications
 Rapid, dynamic provisioning of resources
 Complete control over the requested resources

Developers
 Simple access: use of REST and RPC over HTTP(S)
 Elasticity to respond to peaks in demand for applications

Administrators
 Flexible management: separate mgt. of machines and services
 Separation of responsibilities: Hardware / Services / Platforms / Users

Resource Providers
 Better utilization of shared resources
 Federation (outsourcing) possible

4

State of the Art

Commercial Provider: Amazon Web Services (AWS)
 Leading and largest IaaS service provider
  Improving and adding new services at a phenomenal rate
 Providers differentiate based on price, SLAs, location, etc.

Commercial Cloud Distribution: VM-ware
 Extremely good and complete
 Very expensive, except for ESXi hypervisor (free)

Open Source Cloud Distributions: Many!
 Essentially none in 2007; now easily a dozen different distributions
 StratusLab, …, OpenStack, OpenNebula, CloudStack
 Very different levels of maturity, stability, scalability, etc.

IaaS cloud providers all use similar semantics, but different APIs, etc.

5

Where did it start?

Informal collaboration to investigate
running grid services on Amazon
EC2 (2007)

StratusLab Project (6/2010 to
5/2012) co-funded by EC with
6 partners from 5 countries

Open collaboration
to continue the
development and support of
the StratusLab software

Website: http://stratuslab.eu
Twitter: @StratusLab
Support: support@stratuslab.eu
Source: http://github.com/StratusLab

Identified need for open
source cloud distribution.

Production dist. with academic
& commercial deployments.

6

Releases

Post-Project Releases
 V2.1 (16/10): Streamlined release; improved IO perf. with virtio drivers
 V2.1.1 (29/11): Bug fixes; storage upload; better Windows support
 V13.02 (31/1): Support for CloudInit contextualization and bug fixes
 V13.05 (18/6): Initial steps towards new architecture
 V13.09 (30/9): CIMI and new architecture

Release Policy
 Quarterly timed releases (13.02, 13.05, …)
  Intermediate bug fix releases as needed
 Roadmap (6-month) available describing the StratusLab evolution

Support Policy
 Best-effort support for all recent releases, emphasis on latest

7

StratusLab Services

8

StratusLab

Services
 Compute: Virtual machine management (currently uses OpenNebula)
 Storage: Volume-based storage service
 Network: Simple configuration for public, local, and private VM access
  Image mgt.: Complete system for trusted sharing of VM images

Tools
 Python CLI and APIs (Libcloud) to facilitate use of cloud
 CLI to facilitate the installation of services

9

Service Details

10

Compute

Features
 Fast provisioning of VMs, with low latency start-up

Contextualization
 HEPiX & OpenNebula CDROM contextualization by default
 CloudInit (disk based) also supported

Implementation
 API: XML-RPC interface of OpenNebula
 OpenNebula (C++, Ruby) with customized hooks
 Hooks primarily for caching, snapshots, and storage access

11

Storage

Features
 Volume abstraction for storage service
 Provide users with persistent storage for data
 Serves also as cache of images for VM instances
  (No file-based or object-based storage service)

Implementation
 API: Proprietary REST interface with CRUD actions
 Java-based service using MySQL database for state information
 Can use iSCSI or shared file system for physical storage
 Can use simple files or LVM volumes for disk content

12

Network

Features
 Support 3 specific use cases: public service (public),

batch system (local), and BOINC-like worker (private)
 Dynamic configuration of network switches not needed
 Uses usual services for VM network configuration

Implementation
 No API: manual, static configuration of network
 Rec. configuration: VLAN for cloud services separate VLAN for VMs
 All classes of IP addresses are optional, can create other classes
 Uses DHCP for VM network configuration
 Users responsible for protecting their machines

13

Marketplace & Image Handling

Priorities
 Mechanism for sharing and trusting images
 Possible to distribute fixed, read-only data sets as well
 Split the storage of image metadata and image contents
 Availability of VM images of common operating systems

Implementation
 Marketplace API: Proprietary REST API for create, read, search
 Marketplace acts as image registry and handles only metadata
  Image contents can be located on any public (web) server
  ‘Private’ images can also be held in cloud storage
 CentOS, Ubuntu, OpenSuSE, Debian, Fedora, ScientificLinux images

created and supported by StratusLab

14

Image Handling Workflow

15

Tools

Command Line Client
 Administrator: simplifies StratusLab installation
 Users: access StratusLab cloud from anywhere

Administration
 Quarantine for stopped virtual machines
 Monitoring of cloud activity and resources

Authentication and Authorization
 Supports username/password, certificates, cert. proxies
 Specification in local file and/or LDAP

16

Support

Information
 Web site documentation
 Recorded tutorials

Mailing List
 support@stratuslab.eu

Meetings
 Live tutorials (usually 2-3 per year)
 Workshops (2+ per year)

17

Priorities for Evolution

Interfaces
 Adopt CIMI as the standard interface to services
 Provide complete browser interface for all services

Simplicity, Scalability, & Robustness
 Direct use of libvirt as VM manager
 Distributed database (Couchbase) as information ‘bus’

Better services for system administrators
  Improved overview and monitoring of infrastructure
 Fine-grained accounting for all resources
 Migration control

18

New Architecture

19

Running Clouds in Production

20

StratusLab Deployments

Reference Cloud Services
  (~)Open infrastructures for using StratusLab and providing feedback
 Operated on a first-come, first-serve, best-effort basis
  In production 2+ years, with 250+ registered users
 Two sites: LAL (Orsay, France) and GRNET (Athens, Greece)

Other deployments…
 Academic: France, Ireland, UK, Vietnam, South Africa, …
 Commercial: Atos, Helix Nebula, …

Building on top…
 SlipStream from SixSq: cloud based systems deployment and testing

21

Cloud Experience at LAL

Private cloud for laboratory services
 Works well, plan to migrate all services including grid worker nodes

and experiment-specific servers
 Services switched to VMs without users being aware of change
 Very different way of working, need to change administrator habits
 Have seen some stability issues related to SL6 kernel/virtualization

Public cloud open to university
 Very positive reaction to cloud; LAL resources nearly 100% used
 Fields: biology, software eng., stats, astrophysics, bioinformatics, …
 After initial introduction, users require only low level of support
 Other labs offering StratusLab training without our direct involvement

Majority of problems from machine room & hardware, not software.

22

Federated Clouds

23

Transparent Federation
 Site operators “outsource” to

other providers
 Completely transparent to end

users
 Difficult to achieve in practice

because of concerns about data
protection, network access and
performance

Federation Models (Hybrid Cloud & “Sky” Computing)

24

Brokered Federation
 Variety of different cloud

infrastructures are visible to
users

 Users choose to place virtual
machines in particular locations

 Simple clients can handle
federation if differences are
small

 Orchestrators are needed for
larger differences between
clouds

Both Helix Nebula and EGI take
the brokered approach

Federation Models (Hybrid Cloud & “Sky” Computing)

25

SlipStream

Cloud orchestrator and deployment engine
 Facilitates testing, deployment, and maintenance of complex systems
 Transparent access

to multiple cloud
infrastructures

 Allows automated
multi-cloud deployment
of systems

26

Conclusions

StratusLab Cloud Distribution
 Supported, stable, and production-quality IaaS cloud distribution
 Used for reference cloud service for 2+ years
 Other academic and commercial deployments
 Defined, ambitious roadmap for the its continued evolution
 Frequent administrator and user tutorials and workshops

StratusLab Collaboration
 New collaborators welcome: developers and documenters!
 Weekly phone conference between developers
 Biannual StratusLab workshops

27

Questions and Discussion

website http://stratuslab.eu
twitter @StratusLab

support support@stratuslab.eu

StratusLab source http://github.com/StratusLab
SlipStream source http://github.com/slipstream

http://stratuslab.eu/

Copyright © 2013, Members of the StratusLab collaboration.

This work is licensed under the Creative Commons Attribution 3.0
Unported License (http://creativecommons.org/licenses/by/3.0/).

