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- Motivation and General Principles

- SuperCDMS at Soudan
- Detection Principles
- Results from CDMSlite
- New Results from SuperCDMS LT

- Plans for the SuperCDMS at SNOLAB
experiment
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The Nature of

- The Missing Mass Problem:
- Dynamics of stars, galaxies, and clusters
- Rotation curves, gravitational lensing
- Large Scale Structure formation
- Wealth of evidence for a particle solution
- Microlensing (MACHOs) mostly ruled out
- MOND has problems with Bullet Cluster
- Non-baryonic
- Height of acoustic peaks in the CMB (Qp, Om)
- Power spectrum of density fluctuations (Qm)
- Primordial Nucleosynthesis (Qp)
- And STILL HERE!
- Stable, neutral, non-relativistic

- Interacts via gravity and (maybe) a weak force

J00

250 |

Multipole moment, /
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__ Direct Detection Rates

Standard Halo Model:

- Energy spectrum and rate depend on | Dark Matter Halo Solar System
details of WIMP distribution 1n the | |
dark matter halo.

Sy

- Assume 1sothermal and spherical,
Maxwell-Boltzman distrubution

- vims = 270 km/s , vo = 220 km/s, Galactic Disk
Vese = 344 km/s

-po =0.3 GeV/cm?
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__ Direct Detection Rates

Standard Halo Model:

- Energy spectrum and rate depend on
details of WIMP distribution in the
dark matter halo.

- Assume 1sothermal and spherical,
Maxwell-Boltzman distrubution

-Vims = 270 km/s , vo = 220 km/s,
Vese = 344 km/s

-po =0.3 GeV/cm?

Flux:

- Assume the mass of the WIMP is
60 GeV/cm3

- ~20 million/hand/sec
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WIMP - Nucleus Interactlon

Assume that the dark matter 1S not only grav1tat10nally 1nteract1ng (WIMP)

WIMP Target Nucleus WIMP

from galactic halo in laboratory Elastic collision

v~220 km/s v~0 km/s [ Or
Er~30 keVr
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WIMP Nle eractlon

WIMP Target Nucleus WIMP

from galactic halo in laboratory Elastic collision

v~220 km/s v~0 km/s [ Or
Er~30 keVr

- Spin-Independent
- The scattering amplitudes from individual nucleons interfere.

- For zero momentum transfer collisions (extremely soft
bumps) they add coherently:

Am? Enormous enhancement for heavy nuclei target!
O, >
\ *— atomic mass _ Mmymn ) )
my = e - = reduced mass
coupling constant X N
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Interaction Rate

' particle nuclear local properties
|ﬂteraCt|Oﬂ theory structure of DM halo
Rate

[events/keV/kg/day] dR 0o FQ(ER) Po T(ER)

dEr  m, m2 Vo \/T

The Gory Detalls:

F(ER) ~ exp (— Ermpy Rg / 3) “form factor” (quantum mechanics
of interaction with nucleus)

- mxm N
Wy = my + my “reduced mass”
2 2 integral over local WIMP velocit
T(ER) — exp(—vmin/ UO) distfibution ’
o 2
Umin = \/E rmy/(2m7) minimum WIMP velocity for given Er

5/27/2014 - Results from SuperCDMS - Jodi Cooley



Direct Detection Event Rates

- Elastic scattering of WIMP Total Event Rate
deposits small amounts of _ Xe m, = 100 GeV/c?

energy into a recoiling
nucleus (~few 10s of keV)

1.00. Oy-n = 10" cm?

0.50~

- Featureless exponential

R(Ethresh)[counts/10kg/yr]

spectrum with no obvious 0.10;
0.05-
peak, knee, break ... -

- Event rate is very, very low. 0 10 20 30 40

Ethresh [kCV]

- Radioactive background of most materials is higher than the
event rate.
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Motivation for Low Mass WIMPS
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my (GeV)

- No signal has thus far been seen at
higher mass by direct detection
experiments or at the LHC.

- Particle Physics models provide
candidates for light dark matter
including (but not limited to):

- Supersymmetry (neutralino in
the MSSM or NMSSM, neutrino
in extended models)

- Asymmetric Dark Matter
- others

- This parameter space is largely
unexplored and must also be
advanced!
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D1rect Detectmn Event Rates

Total rate for d1fferent thresholds
(assumed: my = 10 GeV /2, 0yn =104 cm?)

R(Ethresh) [counts/10kg/year]

xXe
Ge 1.00
%At 0.50 Knowing your energy scale
s and efficiency at threshold
Ne are cruciall
0.10
o.osf

r ‘ \ w w w ‘ ‘ ‘ ‘ ‘ ‘ : : | : | Eh h k
. 0 -0 20 40 thresh [keV]
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_ Challenges

Low energy thresholds (>10 keV - |10s keV)
Rigid background controls

* Clean materials

* shielding

* discrimination power

Substantial Depth

* neutrons look like WIMPS
Long exposures

* large masses, long term stablility
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~ SuperCDMS 1 a Nutshell

Use a combination of discrimination and shielding to maintain a

experiment with low
temperature semiconductor detectors

Discrimination from
measurements of
ionization '
phonon energy ' |-

charge distributions
charge

Echarge

Side 2

Keep backgrounds low as possible through Surface
shielding and material selection. Side 1

5/27/2014 - Results from SuperCDMS - Jodi Cooley 12




3” diameter
1” thick

- Ge crystal (600 g) interleaved Z-sensitive
Ionization and Phonon detectors (iZIP)

- Ionization lines (12 V) are interleaved with
phonon sensors
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W e - Ge crystal (600 g) interleaved Z-sensitive
1”7 thick Ionization and Phonon detectors (iZIP)

- Ionization lines (12 V) are interleaved with
phonon sensors

- Two charge channels on each face can be used
to reject surface and sidewall events
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Phonon sensor layout:

W e - Ge crystal (600 g) interleaved Z-sensitive
1”7 thick Ionization and Phonon detectors (iZIP)

- Ionization lines (12 V) are interleaved with
phonon sensors

- Two charge channels on each face can be used
to reject surface and sidewall events

- Phonon sensors and their layout are
optimized to enhance phonon signal to noise
ratio

- Each side has one outer channel to reject zero
charge events and 3 inner channels to reject
surface and sidewall events.
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W e - Ge crystal (600 g) interleaved Z-sensitive
1”7 thick Ionization and Phonon detectors (iZIP)

- Ionization lines (12 V) are interleaved with
phonon sensors

- Two charge channels on each face can be used
to reject surface and sidewall events

- Phonon sensors and their layout are
optimized to enhance phonon signal to noise
ratio

- Each side has one outer channel to reject zero
charge events and 3 inner channels to reject
surface and sidewall events.

- 9 kg Ge (15 iZIP detectors, each with mass
mass 600 g) stacked into 5 towers
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Bulk Events:
Equal but opposite ionization

signal appears on both faces of AN
detector (symmetric) %,/
Surface Events: '
Ionization signal appears on oy
detector face (asymmetric)
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- SCDMS 1ZIPs: Charge Signal

® bulk events (y)
@ surface events (y + )

Bulk Events:

Equal but opposite ionizatio
signal appears on both faces of
detector (symmetric)

Surface Events:

Ionization signal appears on one
detector face (asymmetric)

8of

Sidg 2 ghafge u{keg) .

[
]
T

R U R pote =3 st

<
T

0 0 20 30 40 50 60 70 80 90 100

Side 1 Charge (keV)

lonization symmetry 1s a
powerful way to discriminate
surface events from bulk events.
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Backgrounds “1%Pb

Airborne radon is everywhere. (v
It can absorb onto detectors n
during fabrication and testing

Pa- 234m
1.2m
2.3 MeV

' Y

Th - 234 Th - 230
0.212}’.? 1(\1/1ev 4.;1-?19; ]ri{ev * o - decay
Quickly decays to 2!1'Pb e -

(22.5 year half-life) oy

Bi - 210
50d
1.2 MeV

Bi- 214
19.7m
04-33 MeV

J

Pb - 206
stable
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*1°Pb

- Airborne radon is everywhere.
It can absorb onto detectors
during fabrication and testing

- Quickly decays to 21°Pb
(22.5 year half-life)

- 210Pb produces a class of

surface events with energies in

the WIMP search range
(< 100 keV).

- To test the surface event

rejection capabilities of the iZIP
detectors, two 210Pb sources

were deployed.

210Pb
2yr Endpoint 16.96 keV
B.R. 843%
Endpoint 63.6 keV
BR. 16£3%
21OBi
21OBi* |
<3 ns |_ e
€ 30.15 keV
45.7 keV 57+2% )
4.3+1.4% =
Y 30.83 keV
6.0£0.2%
46.539 keV| € e e
4.25+0.04%)| *%-° 33.12 keV

210Rj —V

keV| 46 keV
16+5% O.9i0.3%L

Tol |
\4

0.50+0.02%

L1
L2 ,\,
L3

24.6+0.8% emit
Flourescent x-rays

M N NOP.. Mostly Auger

‘electron emission
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SCDMS: 2!%Pb Test

@® Failing Charge Symmetry Selection

( ® Bulk electron recoils
°

1.2 U T e T @ Passing Charge Symmetry Selection 1.2 o v Bulk nuclear recoils
.: oy N f e W -—_20 Nuclear Recoil Yield Selection . k‘ Surface events
1t 1 IR 5 R
' o %
o D 5
0 - — . o
~ 0.8f [ 0.8¢ :
c c .
© -+
: g
.E 004' OE 0.4>
© | \BEGET Viot v he it de it i maiesiedpesaaspeiedasmasyesennnsnns
- D R R AT T 2
0.2¢ 0.2;
5, b, gat o ;\.'i;"”‘-* ,':‘ e
% 20 20 60 80 100 O —os

Recoil Energy [keV] lonization: (Slde 1- Slde 2)/T otal

71,525 (38,178) electrons and 16,258 (7,007) - ~50% fiducial volume (8-115 ke Vr)
206Pb recoil surface event collected from

210Ph source in 905.5 (683.8) live-hours .
- Allows an ~100 kg experiment run for 5

In ~800 live hours 0 events leaking into years at SNOLAB with less than 1 event

thg signal region background.
(misID < 1.7 x 105> @90% C.L.)

- <0.6 events in 0.3 ton-years

APL 103, 164105 (2013)
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e

nds

Solutions:

Sources: ~

4 )

Radioactive decays from
naturally abundant radio- |

» Work with most radio-pure materials
possible to minimize rates in detectors
and components closest to the detectors.

* Install passive (active) shielding to

~N

1sotopes suppress (detect) backgrounds from
N o surrounding environment
* Carefully screen experimental
s ~N components
Radioactive decays from * Powertful discrimination from analysis
“created” radio-isotopes > g

(i.e. activated materials)
\§ J

\_

* Minimize fabrication and handling time
to suppress exposure to cosmic rays.

Interactions from cosmic rays

RS

and their daughter particles.

* Go underground.
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Community Assays Database

- - - = = = = == = = S
Use Cl Material
Search About
copper e
» EXO (2008) Copper, OFRP, Norddeutsche Affinerie Th < 2.4 ppt U < 2.9 ppt : x
» EXO (2008) Copper tubing, Metallica SA Th < 2 ppt U < 1.5 ppt x
» ILIAS ROSEBUD Copper, OFHC x
» XENON10O (2011) Copper, Norddeutsche Affinerie Th-228 21() muBg/kg U-238 70() muBa/kg : x
» XENONI10O (2011) Copper, Norddeutsche Affiinerie Th-228 < 0.33 mBa/kg U-238 < 11 mBa/kg %
» EXO (2008) Copper gasket, Serto Th 6.9() ppt U 12.6() ppt . x
» EXO (2008) Copper wire, McMaster-Carr Th < 77 ppt U < 270 ppt - x

http:/ /radiopurity.org

Supported by AARM, LBNL, MAJORANA, SMU, SJTU & others
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2000 4000 6000 8000 10000
Depth (meters water equivalent)

SUF
17 mwe

0.5 n/d/kg
(182.5 n/ylkg)

Soudan
2090 mwe
0.05 n/ylkg

SNOLab
6060 mwe

0.2 n/y/ton
(0.0002 nly/kg)
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__Shielding: Peel the Onion

Active Muon Veto:

rejects events from cosmic rays
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_ohielding:

Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate

neutrons from fission decays
and (a,n) interactions

Ancient lead
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Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate
neutrons from fission decays
and (a,n) interactions

Pb- shielding from gammas ]

resulting from radioactivity

Ancient lead
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Peel the Onion

_shielding:

G
AT 'f_:;“

Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate
neutrons from fission decays
and (a,n) interactions

Pb: shielding from gammas o
resulting from radioactivity

Ancient Pb: shields 21°Pb betas

Ancient lead
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Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate

neutrons from fission decays
and (a,n) interactions

Ancient lead

Pb- shielding from gammas ]

resulting from radioactivity

Ancient Pb: shields 21°Pb betas

Polyethyene: shields ancient Pb#
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~_Shielding: Peel the Onion

Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate

neutrons from fission decays
and (a,n) interactions

Pb- shielding from gammas ]

resulting from radioactivity

Ancient Pb-: shields 21°Pb betas JJ 5 _ A e 7/ \ e

Polyethyene: shields ancient Pb

Cu: radio-pure inner copper can
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Shielding:

Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate

neutrons from fission decays
and (a,n) interactions R

Pb: shielding from gammas N
resulting from radioactivity ) e teg e ota ks LN

Ancient Pb: shields 21°Pb betas =2

Polyethyene: shields ancient Pl

Cu: radio-pure inner copper can

Ge: target
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A Low lonization Experiment

e

‘ TES
Charge Propagation
Resulting Luke Phonons
=
'Prompt' Phonons
| —~em D
4 . I
Luke energy scales as bias
voltage and noise remains
constant until breakdown
Eke = Nem X €Vp
\ J

- CDMSlite strategy leverages Neganov-
Luke amplification to obtain low
thresholds with high-resolution

- Ionization only, uses phonon
instrumentation to measure ionization

- No event-by- event discrimination of
nuclear recoils

- Drifting Ne electrons across a potential
(V) generates qN.V electron volts of
heat

where € = 3eVin Ge.

- The work done drifting the charges can be
detected as heat.

11/1/2013 - U Kentucky - Jodi Cooley
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_ CDMSlite - The Detector

- Custom electronics were installed to
allow biases above 10V

- Disable one side of iZIP and raising
that entire side to the bias voltage.

- A voltage scan indicated 69 V was the
optimal operating voltage.

- At low voltage, the signal increases
linearly with no charge noise.

- At high voltage onset of leakage
current increases the phonon noise.

- The signal gain at 69V is substantial.

CE(V=69) 14+¢N.V

G* = = 24

Slignal to Noise

3I0 4I0 5I0 GlO 7I0 80
bias voltage [V]

11/1/2013 - U Kentucky - Jodi Cooley
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CDMSlite

25 ' : T
1.3 10.4
15| 89
10}
CDMSlite data
from ~ 7 kg-days
5 L
0
0 2 4 6 8 10 12
keVee

- Voltage assisted calorimetric 1onization detection can improve energy
resolution and threshold of bolometric devices.

- Resulting Luke amplification has excellent energy resolution down to
170 eeVee 1n our detectors.

- Resolution of various Ge activation lines.
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CDMSlite: The Data

- Data were taken during three periods in 2012
- One iZIP was used, IT5Z72 - 0.6 kg

- Selected for its low trigger threshold and low leakage current
- There were two neutron exposures (?32Cf)

- Activation of Ge ("Ge + n --> 71Ge) allowed determination of
energy scale and monitoring of stability (10.36 keVe. and 1.29
keVee lines).

- Raw exposure was 9.6 kg days (16 live days)

Run Period |Starting Date| Ending Date [Raw Livetime |h]
1 August 18 August 29 166.5
2 September 7 |September 14 111.2
3 September 18|September 25 105.9
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PRL 112, 041302, 2014

22 1 I I I I T
| |===CDMS-Si: m = 8.6 GeV/c*, 057 = 1.9 x10~* cm”
20 ;| ===CoGeNT: m = 8.2 GeV/C2, os;r = 3.2 x107*! ¢m? ] ]
, Nuclear recoils create
181 | | fewer charges than
i <— NR threshold 1.3 keVee )
> 16 | ctivation line 1 electron recoils.
L 44l | appears at -
é” ! 5%pkev ~~ Conversion keVee to
— 1 . nr |
S 120 | keVnr
Q I
‘\xn 10 B I | 1 4 %
E I Enr — Eee eV,
S | . 1+ Y (Ey,)
Qo !
O ] .
| - where Y is the
> 1 1onization yield,
N
T 4 | defined to be unity for
‘ m'l- i H 'Tl .-“: . l. . electron recoils.
3 4 5 6

Energy [keVnr], bin width= 90 eVnr

11/1/2013 - U Kentucky - Jodi Cooley 26



CDMSlte Results
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SCDMS Low Threshold Strategy

Challenge

- Signal is at very low recoil energies where backgrounds are difficult to reject

\ y
4 A o 7 GeV/c? WIMP-induced recoil spectrum
Strategx _ % 1 €— Analysis —)' Si (A=28)
- Use 7 detectors with lowest > e nee i Ge (A=72)
i Bt I
thresholds; lower the threshold as| < 1w ! Xe (A=131)
much as possible :«: ool | : Vese = -’;‘(l)‘i km/s
©  E ! o= cm
- 1.6 keVy, trigger threshold 2 0l | '
c = )

- 557 kg-days exposure taken from | 3 L ! i

Mar 2012 - Jul 2013. PR |
\_ J 4(-0, 10° = :
i h = E E i | | |

Trade-off: T N

Nuclear recoil energy [keV ]

- Background is difficult to reject r N
below 10 keVy:. Try to reject as We expect background events in
much background as possible. the signal region! )

N J
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Blind Analysis:

Analysis Details

All single-detector scatter events in energy range removed from study, except data

following 232Cf calibration due to activation.

Lindhard nuclear-recoil energy &keVnr]
2 3 4 5 6 7 8

—

Data Quality
! + Thresholds .

— ]

—
o

O
o

Efficiency

o
»

+ preselection

0.4} + BDT
0.2}
0.03 4 6 8 10 12

Total phonon enerqy [keV]
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Analysis

Blind Analysis:
All single-detector scatter events in energy range removed from study, except data

following 232Cf calibration due to activation. , , , Uindhard nuclearrecoil energy [keVnr]

[ N 3o . -
Data Quaht}ﬂ & Data Quality /
9
Reject periods with poor detector £ 0.8} -~ +Thresholds
performance. |
+ preselection

\ Remove misreconstructed and noisy pulses Y

g
»

0.2f

0.0 4 6 8 10 12
Total phonon enerqy [keV]
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Analysis Details

Blind Analysis:
All single-detector scatter events in energy range removed from study, except data

following 232Cf calibration due to activation. , , , Uindhard nuclearrecoil energy [keVnr]
\ T T T T T

& Data Qualit;g Data Quality //-
Rei . . ! + Thresholds
eject periods with poor detector -

performance. el
\ Remove misreconstructed and noisy pulses Y ﬁ;lezlon
|
\

—
o

Efficiency
o
o

0.4} + BDT

(Trigger and Analysis Threshold:
Select periods w/ stable well-defined

 trigger threshold )0 . x + 2 A
Total phonon energy [keV]

0.2f

5/27/2014 - Results from SuperCDMS - Jodi Cooley 29



Analysis Details

Blind Analysis:
All single-detector scatter events in energy range removed from study, except data

following 232Cf calibration due to activation. , , , Uindhard nuclearrecoil energy [keVnr]
\ T T T T T T

—
o

g—

(D ata Qualit;g Data Quality

Reject periods with poor detector

Efficiency

+ Thresholds

o
o

performance.
\ Remove misreconstructed and noisy pulses Y
\

(Trigger and Analysis Threshold:
Select periods w/ stable well-defined

\trigger threshold )0 . x x 2 5
Total phonon energy [keV]
Preselection: h

Single-detector scatter

Remove events coincident with muon veto
Ionization fiducial volume

Ionization and phonon partitions consistent

\With NR. y
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Blind Analysis:

Analysis

== = — —

All single-detector scatter events in energy range removed from study, except data

following 232Cf calibration due to activation.

~N

fData Quality:
Reject periods with poor detector

performance.
\ Remove misreconstructed and noisy pulses Y
\

(Trigger and Analysis Threshold:
Select periods w/ stable well-defined

 trigger threshold

J
Preselection: A
Single-detector scatter

Remove events coincident with muon veto
ITonization fiducial volume

Ionization and phonon partitions consistent

Lindhard nuclear-recoil energy &keVnr]
2 3 4 5 6 7 8

—
o

Data Quality

+ Thresholds

ﬂ;lezion
0.0

> 4 6 8 10 12
Total phonon enerqy [keV]

Efficiency
o
o

O
o))

g
B

O
N

~

Boosted Decision Tree:
Optimized cut on the phonon fiducial

\With NR. y

\ volume and ionization yield at low energy. )
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Blind Analysis:

Analysis Details

All single-detector scatter events in energy range removed from study, except data

following 232Cf calibration due to activation.

~N

KData Quality:
Reject periods with poor detector

performance.
\ Remove misreconstructed and noisy pulses Y
\

(Trigger and Analysis Threshold:
Select periods w/ stable well-defined

 trigger threshold

%
Preselection: A
Single-detector scatter

Remove events coincident with muon veto

Ionization fiducial volume
Ionization and phonon partitions consistent

Lindhard nuclear-recoil energy &keVnr]
2 3 4 5 6 7 8

—
o

Data Quality

+ Thresholds

@ion
0.0

> 4 6 8 10 12
Total phonon enerqy [keV]
(Boosted Decision Tree:

Optimized cut on the phonon fiducial

O
o

Efficiency

o
»

g
B

O
N

~

\With NR. y

\ volume and ionization yield at low energy. ,

Efficiencies:
Measured for neutrons from %22(Cf.
Corrected for multiple scatter with Geant4.
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Background Estimates

- Prior to unblinding, background estimates were finalized,
including known systematic effects.

- The background model was used to tune selection criteria.
Unknown systematics preclude background subtraction for
this blind analysis.

We decided prior to unblinding to only set an upper limit.

- 4 BDT cuts were optimized for 5, 7, 10 and 15 GeV /c> WIMPs.
Accept events that pass any of the four cuts. Each cut was
simultaneously tuned on all detectors, maximizing 90% C.L.
poisson sensitivity for that mass.

4 )
Background model expectation: 6.17; 5 events

Neutron estimate: 0.1 = 0.02 events
\_ J
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Boosted Decision Tree (BDT)

-1 0 1 2 -0.2 0 0.2 0.4 ) 0.2 0.3 0.4

10 8
total phonon energy [keV] lonization energy [keV] phonon z-partition phonon radial partition

|

B WIMP (10 Geve?)
- Sidewall ?°°Pb
I sidewall 2'%Pb+2'%Bi
B Face 2'°Pb+2'%Bi
B 1.3 keV line

I Comptons

- Backgrounds modeled with .
simulated data based on

sidebands and calibration
data.

- Signal modeled with
nuclear recoils from 22Cf

calibration data rescaled for
10 GeV/c2 WIMP.

| ||||||‘

10

| ||||||‘

||||_‘L
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Events passing all cuts prior to applying BDT

3

4

Lindhard nuclear-recoil energy [keVnr]
5 6 7 8 9
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* [ cut

11 candidates observed, 6.27 expected

Lindhard nuclear-recoil energy [keVnr]

3 4 5 6 / 8 9
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95% Contfidence Intervals

Lindhard nuclear-recoil energy [keVnr]

4 2 3 4 ) 6 7/ 8 9
;‘ _I | | | | | | L | LI} £ &. I;‘: :.l"i .F T q.o :I. I'I N L | | |
o | : ':g.-'-’ ‘. 95% C.L. interval for a
= — ) 5,7, 10 and 15 GeV/c2 WIMP
o 31— . after passing BDT selection
e =
GC) L Detector ENeroy Bkgd
o 2 [keVnr]
"ES' T121
N
- T2Z1
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I | = T222
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44tk N TS N T A N P M L1 | L |
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iscussion

Events are high in quality. Only the lowest energy candidate looks like
spurious noise.

6 .
[ Range of counts with p-value>0.05 - GOOd agreement Wlth
lo back d tati .
ottt predicted background

on most detectors.

N

- T5Z3 observes the 3
highest-energy events.

(Poisson p-value is
0.04%).

N

w
IIIIIIIIIIIIIIIIIIIIIIIIIIIII

Events passing BDT

—h

T1Z1 T2Z1 T2Z2 T4Z2 T4Z3 T5Z2 T5Z3
Detector

T5Z73 detector has a shorted ionization guard which may have affected the
background model performance. Additional studies underway.
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Number of events / 0.04 Residual Number of events / 0.04

Residual

Model to Data Comparison
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For most detectors, there is good agreement with predicted background.
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New Limit for Low Mass WIMPs

_ _

Note: Assumes SHM, Spin-Ind

e

pen

dent Couplings: This

= = - - — —— S

plot changes if we change assumptions!

90% C.L. optimal interval method (no background subtraction)

, & 10
systematics
(efficiency, energy
scale, trigger
efficiency)
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Future: SuperCDMS @ SNOLAB

*SNOLAB 6010 mwe

Dilution
Refrigerator

Phisy,
b Shig, g

Cryostat-and *"M.,,_

! detectors S —
SchtilRqellel oay of6 .

s

Payload 110 kg of Bl 2
Ge Tower 8.4 kg

Ge & S1 - capacity 400 kg Ge
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Why SNOLAB?

Depth 1s Important

3

s—surface
2 —

—SUF (USA)

OROVILLE (USA)

IMB (USA)
/ SOUDAN (USA)
KAMIOKA (JAPAN)
BOULBY (UK)

Log4o(Muon Flux) (m2s1)

-3 GRAN SASSO (ITALY)
HOMESTAKE (USA)
-4 |— FREJUS ( FRANCE)
BAKSAN (USSR)
-5 b— MONT BLANC (FRANCE)
SUDBURY (CANADA)

-6 — —— KOLAR (INDIA)
-7
. 1 | | l 1

0 2000 4000 6000 8000 10000

Depth (meters water equivalent)

Soudan

2090 mwe
0.05 n/y/kg

SNOLab
6060 mwe

0.2 n/y/ton
(0.0002 n/y/kg)

We only need to worry about radiogenic neutrons!
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Radi Neutrons

(" - External Radiogenic Neutrons N

- Resulting from fission and alpha-n interactions from U, Th in
cavern rock

L Expected to be negligible with passive shielding

@ Internal Radiogenic Neutrons

/
~

- Resulting from fission and alpha-n interactions from U, Th in
copper cans, shielding and supports.

- Expected to be ~1 event, depending on material cleanliness y

For these reasons we are considering a
neutron veto in the shield design.
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- Surround the cryostat with a high efficiency neutron detector to tag

neutrons.

APDs, SiPM

- Modular tanks of
liquid scintillator,
with radial thickness
0.4 m, viewed by
phototubes.

- Details of scintillator
to use (Gd- or B-

or fibers N

I

!
3 -

= & 4
il ar

-'.-uf 4
Water/Poly
Shielding

loaded) under Planks Liquid
consideration. Sﬁ/ilnt&uftor
odulies
- —
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- Alternating layers of Gd-loaded poly/scintillator and lead.

- Preliminary studies underway.
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~ From Soudan to SNOLAB

9.0 kg Ge (15 x 6009)
3” Diameter
2.5 cm Thick

\
SuperCDI\/IS Soudan

/

2 charge + 2 charge
4 phonon + 4 phonon

\_

J

Va

SuperCDMS SNOLAB B

98 kg Ge (70 x 1.4 kg)
66 detectors @ nominal voltage + 4 @ HV
12 kg Si (20 x 0.6 kQ)
18 detectors @ nominal voltage + 2 @ HV
4” Diameter
3.3 cm Thick /

\
2 charge + 2 charge
6 phonon + 6 phonon
/
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SNOLAB Towers

~ SuperCDMS

Improved Surface Event Rejection:

- Lower operating temperature gives us improved
phonon resolution

- Improved charge resolution with HEMT readout

- Improved phonon resolution + more phonon
channels + improved charge resolution

» improved fiducialization

» better surface event rejection
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f

- First science results using the background rejection capability of the new
SuperCDMS iZIP detectors.

- Seven iZIPs were analyzed resulting in a 557 kg-day exposure in the 1.6 keVy, - 10
keVyr energy range. This analysis yielded an upper limit on the spin-independent
WIMP- nucleon cross section of less than 1.2 x 1042 cm? for WIMPs of
mass 8 GeV /2.

- New phase space was explored for WIMPs in the mass range 4 - 6 GeV / c2.

- The interpretation of the excess events seen by CoGeNT as a WIMP signal is
disfavored. CDMS II (Si) disfavored assuming standard WIMP interactions and
a standard halo model.

- The standard high threshold analysis of SuperCDMS is ongoing and aims for a
background of less than 1 event.

- Plans for a 110 kg SuperCDMS SNOLAB experiment are well underway. If
funded, the SuperCDMS SNOLAB experiment will have unprecedented
sensitivity to low mass WIMPs.
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Backup Slides
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Events / ( 0.16)
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9001
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7001
600
500
400F
300
200F
1001

r
—1all

—— Qinner events

events l

0
50
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15

12722

0 200 250 3
Calibrated Qi (keVee)

1l
00

1l 1
350 400

10

A =-0.601 £0.13
p;"3 = 2.915 +0.033
ot = 0.174 +0.034

N, = 66 + 11
N, = 55 +10
f,= 1.0 +58

N = 120.480234742

r2z2

23

- Electron recoil ionization energy
scale calibrated with 133Ba lines.

- Phonon energy calibrated to give

24

b, = 0.432 + 0.010
N, = 48 + 11

N, = 1246 + 36

f,= 0.547 + 0.043
f,= 0.139 + 0.011
offset = 0.034 +0.014
N = 1294.0

25 26 27 28

total phonon energy (ptNF) [keV]

ionization yield of 1.

- Linearity at low

energies checked with
10.3 (k-shell) and 1.3
(I-shell) keV lines.
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Background Model w/ Pulse Simulations

Backgrounds at low energy
are more difficult to
separate from signal region

High energy event
w/ good signal to noise, Random trigger
scaled down in amplitude (e.g. noise)

due to poor signal to noise
+ | Study directly with a pulse
simulation; using high
S— energy events in sidebands

and calibration data

Simulated low
energy event / \

weight events as a
function of energy to
match low energy
spectrum

@struction sof@

J

F 4
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L&e&oin Matter

fn/fp = —0.7
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As an example, changing the ratio
of f./f, changes the interpretation of

104 :
) ] . —
the results. L ; Ge
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—

—— C.L. < 68%

— 68% < C.L. <95%
95% < C.L. <99%

- C.L.>99%

—&— Measurement

— - Lindhard

Best fit

Ionization Energy [keV]

I IIIIII‘ I

Total phonon energy =
Etotal — Eluke + Erecoil

Etotal is measured with phonons
Eluke is the energy from

propagating the charges
NR equivalent energy =

Etotal — Eluke NR

3 4 5 6 7 8 910 20
Total Phonon Energy [keV]

30 Eluke NR 1S estimated from the

mean NR 1onization. It varies
with Eiotal
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Analysis Background Discrimination

——

.\\‘9
/Bulk Electron Recoils: A

Primary sources: Compton background and
1.3 keV activation line

- Use ionization and phonon energy to
\_ discriminate NR from bulk ER Y,

4 )

Sidewall and Surface Events:
Primary sources: betas and x-rays from 2!9Pb, 219Bj,
206Pb recoils; outer radial Compton background; and
ejected electrons from Compton scattering
- Use division of energy between inner and outer
electrodes
- Use division of energy between sides 1 and 2.

o /
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