Superconductivity approach
to the electroweak symmetry breaking
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M, = 125 GeV

m; = 172 GeV
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v = 246 GeV

E = \/p?* +m?
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Basics

of quantum field
theory approach




Quantum field theory
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Particle process:
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Quantum field theory
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Quantum field theory

o
Renormalization: % fA
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I Non-renormalizable theory contains infinite number of terms. I
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Quantum field theory
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Quantum field theory
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Renormalization:

does not require counter-terms.

(If A'is massless!)

I Renormalizable theory contains finite number of terms. I
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Gauge principle — massless vector bosons

Introducing vector bosons in a renormalizable way.

QED: massless photons local (gauge) U(1)em Ssymmetry
QCD: massless gluons local (gauge) SU(3), symmetry
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Gauge principle — massless vector bosons

Introducing vector bosons in a renormalizable way.

QED: massless photons local (gauge) U(1)em Ssymmetry
QCD: massless gluons local (gauge) SU(3), symmetry

Masssless vector bosons cannot be introduced consistently without the gauge principle.

‘Cgm :&e(ia_m)we [ﬁem :qﬁe(i@_eﬁi_m)we_k EFQ]
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Gauge principle — massive vector bosons

Weak inferactions: massive W,Z bosons
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Gauge principle — massive vector bosons

Weak inferactions: massive W,Z bosons

: 0
By hands as Proca fields A*” = Ry O(q")
q
€ Wi, e LAVAVAV VSR 4
v ~ E2 A h ~ M ~ A2
. W, N S A KE
Tree-level unitarity fails. Nonrenormalizable
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Gauge principle — massive vector bosons

Weak interactions: massive W,Z bosons
By hands as Proca fields Nonrenormalizable

e Wy
A
& WL

Tree-level unitarity fails.

By gauge principle: The free-level unitarity is improved.
But:

[ﬁ y) M%VW“WMJ
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Spontaneous breaking
of electroweak gauge symmetry

Lagrangian is invariant, but not the ground state.
Equations of motions are invariant, but not their solutions. SU(Q)L X U(l)y

Nambu—Goldstone bosons

Anderson-Englert-Higgs (ABEGHHK'tH) mechanism:

massless gauge boson + massless Nambu-Goldstone boson = massive vector boson

(2 d.o.f.) + (1 d.o.f.) = (3 d.o.f.)

[ Renormalizable way ]
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Higgs boson

Tree-level unitarity
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Higgs boson

Tree-level unitarity

(A WL
’ ~CEy
e Wy,
Simplest way: infroduce neutral scalar
4 I
e Wi,
h
e
N Ve )
~ F
If there is no such new particle(s), the W and Z stay massless.
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Gauge model of elementary particles

EXTREMELY SUCCESSFUL
Smgle electroweak scale Fermion field content
= 246 GeV
;‘; T FITS
W = g v’
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Gauge model of elementary particles

EXTREMELY SUCCESSFUL

Smgle electroweak scale Fermion field content
v = 246 GeV
MW - FITS

But what causes the Higgs mechanism?

® LAL, Orsay 6/5/2014 @ 18



Fermion Masses

SU(2)., x U(1)y is not only gauge but also chiral!

Fermion mass terms are forbidden:

( me@ewe = Me (/&eL/‘peR + 7756R¢BL) \
Uy : i = e_QTa%R
\ wéL — e_haweL y

® LAL, Orsay 6/5/2014 ® 19



Fermion Masses

SU(2)., x U(1)y is not only gauge but also chiral!

Fermion mass terms are forbidden:

( me&ewe = Me (&eL@beR + 7756R¢BL) \
Uy : i = e‘Qf‘*weR
\ wéL — e_haweL y

How to get fermion masses?
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Standard Model

Infroduce elementary complex scalar doublet.

gauge bosons: gQW“HTHWM
fermions:  yir, Hyr + h.c.
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Standard Model

Infroduce elementary complex scalar doublet.

gauge bosons: g% (H)*WHW,

_ (H) x v
fermions:  y(H )Y v¥r + h.c.

V=—p*H'H+ \NHH)?

® | AL, Orsay

Notice that fermion masses are not
important for successful EWSB.
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Superconductivity

We know similar situation.

Meisner effect. photons are massive in the bulk of superconductor.

is spontaneously broken.

Ginzburg—Landau theory describes it by complex order parameter field,

Brja, L . 2
F 24 = ——|(—iAV — 2eA
D a|q§|+2|¢|-|-2 e(1V eA)q|
which can develop nonzero value  |¢|* = _2 %y

B
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Superconductivity

We know similar situation.

Meisner effect. photons are massive in the bulk of superconductor.

U(1)em

is spontaneously broken.

PHENOMENOLOGICAL DESCRIPTION

electrons acquire a gap

E=./e¢ +|A]?
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Bardeen—Cooper—Schrieffer theory: ¢ ~ V,Df’;lbe_k




Standard Model

Electroweak symmetry breaking: W, Z bosons are massive.

U(l)y X SU(Q)L
is spontaneously broken.

Standard Model describes it by complex Higgs field,

L > p*H'H+NH'H)?+D'H'D, H

2

if
which develops nonzero v.e.v. H'H = —g—)\ >0
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Standard Model

Electroweak symmetry breaking: W, Z bosons are massive.

U(l)y X SU(Q)L

is spontaneously broken.

PHENOMENOLOGICAL DESCRIPTION?

= e.g. (E)TC
l Dynamical EWSB: H ~ YW l E = /plies
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Ouvur approach
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of the same order of magnitude
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Our approach

new dynamics between quarks and leptons

[Ho82]
[KiMu85]
[Na88]
[MiYa89]
[BaHiLI89]
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New dynamics among fermions

... Substituting the Higgs sector of SM.

Renormalizable models:

>t

Simplification: q2 < M?*~ A< Alg-’lanck

four-fermion interaction

5
AM?
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Dynamical fermion mass

1 1
Dirac propagator: massless Sp(p) = = massive S (p) = H
Full propagator: S(p) L
U : = ——=75%
propag p -3

Mass is the pole in the propagator: det [p* — S(p?)S(p?)] = 0

(Urtr) =
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Bound states

Full process

composite scalars:
Nambu—Goldstone bosons, Higgs boson
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Electroweak gauge boson mass generation
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Pagels—Stokar formulae

Nambu—Goldstone mode

A x

1 1

¢+ P2 (¢%) 2 — M?
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Low-energy effective description

We expect that the low-energy effective description is
the multi-composite-Higgs-doublet model.

th Hb) HT) HCJ HS) H,un cee
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Is the scenario viable?



Top-quark condensation model

[MiYa89] [BaHiLi89]

Out of usual Dirac fermions, only the top-quark contributes significantly to
the electroweak scale by its condensate.

single-composite-Higgs-doublet model

Top-quark is too light to saturate the v, < 0.68v
electroweak scale

A < APlanck

The composite Higgs boson is My, > my
predicted too heavy
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Way out — neutrino condensation

M =~ Mgz ~ 10" GeV

¢
¢
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Top-quark and neutrino conspiracy against
the electroweak symmetry

We assume that ...

... out of all electroweakly charged fermions, both top-quark and neutrinos
contribute significantly 1o the electroweak scale by their Dirac masses and

the corresponding condensates.

[IMa'?1] [AnKelLiRa'03]
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Top-quark and neutrino condensation model

two-composite-Higgs-doublet model

Htj HI/

to reproduce

 the electroweak scale v = 246 GeV
e the top-quark mass my = 172 GeV

e the neutrino mass m, = 0.2eV
« the Higgs boson mass M;, = 125 GeV

[AS'13]

Yt ~~ 0.6
M+ ~ (200 — 250) GeV

RESULT: v _ o0 100
A ~ (1017 . 1018) GeV

® | AL, Orsay
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Conclusions

 Even though the Standard Model is extremely successful, it still
worths to look for the origin of the Higgs mechanism.

« The models based on the superconductivity approach are still
an option.

« They are ambitious as they link many parts of particle physics.
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Lagrangian of the model
and composite Higgs doublets

Four-fermion intferaction:

L D —Gi(trar)(@tr) — Go(Y_ TilL)(> lrvy) — o Mgy (vy)° + hc.

Specially designed to provide
the simplest seesaw pattern.

Two-Higgs-doublet effective description: e Frtv
Leg D —yt@LtR)Ht - yu(z ELVIS{)HV - V(Ht, Hu)
S

[APlanck > A > MR]
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Mass spectrum of Higgs bosons

H.H, — hHAH"|

Larger values of (4, are preferred.
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Right-handed neutrinos

Their existence is extremely well motivated.

e Adding three right-handed neutrinos is sufficient to reproduce
- neutrino oscillations
- dark matter [CaDrScha'13]

- baryon asymmetry of the Universe

* Right-handed neutrino condensation may drive the inflation
of the Universe. [Ba‘09]

l The number of right-handed neutrinos is not constrained. l

Large number of right-handed neutrinos may be welcome.

e O(100) is motivated by some string constructions [ElILe‘07]
e O(10-100) may explain large neutrino mixing [FeKl‘12]
e O(100) improves the standard thermal leptogenesis [Ei*08]

We keep a number of the right-handed In Ouém?del TheTirT
. nummoer turns ourt 10
neutrinos as a free parameter. be large O(10-100)!
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