Generic and Generative Programming for HPC

Joel Falcou

LRI - INRIA

04/06/2014

Context

In Scientific Computing ...

there is Scientific

Applications are domain driven
Users # Developers
Users are reluctant to changes

there is Computing

Computing requires performance ...

... which implies architectures specific tuning
... which requires expertise

... which may or may not be available

The Problem

People using computers to do science want to do science first.

20136
e —

The Problem — and how we want to solve it

The Facts

The ”Library to bind them all” doesn’t exist (or we should have it already)
Al those users want to take advantage of new architectures

Few of them want to actually handle all the dirty work

The Ends

Provide a "familiar” interface that let users benefit from parallelism
Helps compilers to generate better parallel code

Increase sustainability by decreasing amount of code to write

The Means

Parallel Abstractions: Skeletons
Efficient Implementation: DSEL

The Holy Glue: Generative Programming

30f36
e —

Efficient or Expressive — Choose one

A

N\
N\

\
Matlab \

i AN
SciLab N

AN

Expressivite

C++ \
JAVA N

N

\
C, FORTRAN

Efficacite

Efficient or Expressive — Choose one

A

Q@ N\
®
[}

N
3 N NT2
& | Matlab ~\
[scitab N

N

C++ \
JAVA N

Q

C, FORTRAN

Efficacite

Talk Layout

Introduction
Efficiency
Abstractions

Tools

Conclusion

Talk Layout

Efficiency

Generative Programming

Domain Specific
Application Description

\

Generative Component

Parametric
Sub-components

HEERe
>0y
ALEI®

.._.»_____

(" Concrete Application)

/

Generative Programming as a Tool

Available techniques

Dedicated compilers

External pre-processing tools

Languages supporting meta-programming

Generative Programming as a Tool

Available techniques

Dedicated compilers

External pre-processing tools

Languages supporting meta-programming

Generative Programming as a Tool

Available techniques

Dedicated compilers
External pre-processing tools

Languages supporting meta-programming

Definition of Meta-programming

Meta-programming is the writing of computer programs that analyse,
transform and generate other programs (or themselves) as their data.

From Generative to Meta-programming

Meta-programmable languages

TEMPLATE HASKELL

metaOcaml
C++

From Generative to Meta-programming

Meta-programmable languages

TEMPLATE HASKELL

metaOcaml
C++

From Generative to Meta-programming

Meta-programmable languages

TEMPLATE HASKELL
metaOcaml
C++

C++ meta-programming

Relies on the C++ TEMPLATE sub-language

Handles types and integral constants at compile-time

Proved to be Turing-complete

Domain Specific Embedded Languages

What'’s an DSEL ?
DSL = Domain Specific Language

Declarative language, easy-to-use, fitting the domain

DSEL = DSL within a general purpose language

EDSL in C++

Relies on operator overload abuse (Expression Templates)
Carry semantic information around code fragment

Generic implementation become self-aware of optimizations

Exploiting static AST

At the expression level: code generation

At the function level: inter-procedural optimization

100f36
e —

Expression Templates

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
,expr<matrix&>
,expr<plus
, expr<cos
,expr<matrix&>
>
, expr<multiplies
,yexpr<matrixé&>
,expr<matrix&>
>
>(x,a,b);

&)
@ & @

v

-

Arbitrary Transforms applied
on the meta-AST

I of 36

#pragma omp parallel for
for (int j=0;j<h;++3j)

for(int i=0;i<w;++i)
{
x(j,i) = cos(a(j,i))
+ (b(j, i)
* a(j,i)
)

Embedded Domain Specific Languages

EDSL in C++
Relies on operator overload abuse
Carry semantic information around code fragment

Generic implementation become self-aware of optimizations

Advantages

Allow introduction of DSLs without disrupting dev. chain
Semantic defined as type informations means compile-time resolution

Access to a large selection of runtime binding

120f36
e —

Architecture Aware Generative Programming

Domain Specific
Application Description

ral

o

Generative Component

Parametric
b

Domain Specific
D

Architecture
C

<&

13 of 36

Parametric
Architectural

Concrete Application

Sub-components

Talk Layout

Abstractions

140f36
e —

Spotting abstraction when you see one

Processus 3

» F2 |

Pr 1 Pr 2

o
IS

Processus 6 Processus 7

F1 | —»|Distrib. - H»] F2 H»|Collect.} »| F3

Processus 5

| F2 }

15 0f 36
e —

Spotting abstraction when you see one

Processus 3

» F2 |

F1 |}ip|Distrib.H»] F2 H»]Collect.|-»| F3

Processus 5

| F2 H

15 of 36

Parallel Skeletons in a nutshell

Basic Principles [COLE 89]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

16.0f 36
e —

Parallel Skeletons in a nutshell

Basic Principles [COLE 89]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

Functionnal point of view

Skeletons are Higher-Order Functions
Skeletons support a compositionnal semantic

Applications become composition of state-less functions

16.0f 36
e —

Classic Parallel Skeletons

Data Parallel Skeletons

map: Apply a n-ary function in SIMD mode over subset of data
fold: Perform n-ary reduction over subset of data

scan: Perform n-ary prefix reduction over subset of data

17 of 36
e —

Classic Parallel Skeletons

Data Parallel Skeletons

map: Apply a n-ary function in SIMD mode over subset of data
fold: Perform n-ary reduction over subset of data

scan: Perform n-ary prefix reduction over subset of data

Task Parallel Skeletons

par: Independant task execution
pipe: Task dependency over time

farm: Load-balancing

17 of 36
e —

Why using Parallel Skeletons

Software Abstraction

Write without bothering with parallel details
Code is scalable and easy to maintain

Debuggable, Provable, Certifiable

18.0f 36
e —

Why using Parallel Skeletons

Software Abstraction

Write without bothering with parallel details
Code is scalable and easy to maintain

Debuggable, Provable, Certifiable

Hardware Abstraction

Semantic is set, implementation is free

Composability = Hierarchical architecture

18.0f 36
e —

Talk Layout

Tools

19 of 36 I

Different Strokes

Obijectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

200f36
e —

NT?

A Scientific Computing Library

Provide a simple, MaTLAB-like interface for users
Provide high-performance computing entities and primitives

Easily extendable

Components

Use Boost.SIMD for in-core optimizations
Use recursive parallel skeletons for threading

Code is made independant of architecture and runtime

21 of36
e —

The Numerical Template Toolbox

Comparison to other libraries

z
5
L)

Feature Armadillo | Blaze | Eigen | MTL | uBlas
MartLAB-like API v
BLAS/LAPACK binding v
MAGMA binding — — - — —
SSE2+ support
AVX support

AVX2 support
Xeon Phi support — — — — -

\
<
<
<

v
v

ANEN

Altivec support — —
ARM support — —

NEN
!
|

Threading support — — — — =
CUDA support — —

|
|
|
|
|
ANENIENENIENENENENIENENEN

220f36
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

230f36
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file

230f36
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp> and do cosmetic changes

230f36
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp> and do cosmetic changes
Compile the file and link with 1ibnt2.a

230f36
e —

NT2 - From MATLAB ...

Al = 1:1000;
A2 = A1 + randn(size(A1));

X = Lu(AT*A1’);

rms = sqrt(sum(sqr(AT(:) - A2(:))) / numel(A1l));

24 0of 36

NT2 - .. to C++

table<double> A1 = _(1.,1000.);
table<double> A2 = A1 + randn(size(A1));

table<double> X = lu(mtimes (A1, trans(Al));

double rms = sqrt(sum(sqr(A1(_) - A2(_))) / numel(Al));

250f36
e —

Sigma-Delta Motion Detection

Context

Mono-modal algorithm based on background substraction

Use local gaussian model of lightness variation to detect motion
Target applications: robotic, video survey and analytics, defence
Challenge: Very low arithmetic density

Challenge: Integer-based implementation with small range

26 of 36

Motion Detection
NT2? Code

table<char> sigma_delta(table<char>& background
, table<char> const& frame
, table<char>& variance

)

// Estimate Raw Movement
background = selinc(background < frame
, seldec(background > frame, background)

)
table<char> diff = dist(background, frame);

// Compute Local Variance
table<char> sig3 = muls(diff,3);

var = if_else(diff != @
, selinc(variance < sig3
, seldec(var > sig3, variance)

)

, variance

)5

// Generate Movement Label
return if_zero_else_one(diff < variance);

27 of 36

Motion Detection

Performance
-10%
I scalar <
I SSE2 ©
AVX2 -
3 L
I SSE2, 4 cores X
AVX2, 4 cores
d (s8]
5, d
N ~ L
£ X
& ™
o o
[V (\! [Wa)
?2 X
1 L
0
640 x 480
Size

28 of 36

Black and Scholes Option Pricing

Context

Context

Mathematical model of a financial market containing certain derivative
investment instruments.

v 1228V v
9t T27 Y g trRgs V=0

Implementation of European-style option call and pricing
Target applications: finance, insurance
Challenge: Sensitive to data locality

Challenge: Use complex statistical functions

29 of 36
e
e —

Black and Scholes Option Pricing

NT? Code

table<float> blackscholes(table<float> const& Sa, table<float> const& Xa
table<float> const& Ta
, table<float> const& ra, table<float> const& va

)
{
table<float> da = sqrt(Ta);
table<float> d1 = log(Sa/Xa) + (sqr(va)*0.5f+ra)xTa/(vax*da);
table<float> d2 = dl-vax*da;

return Sa*normcdf (d1)- Xa*exp(-raxTa)*normcdf (d2);

300f 36

Black and Scholes Option Pricing

NT? Code with loop fusion

table<float> blackscholes(table<float> const& Sa, table<float> const& Xa
table<float> const& Ta
table<float> const& ra, table<float> const& va

)
{
// Preallocate temporary tables
table<float> da(extent(Ta)), dl(extent(Ta)), d2(extent(Ta)), R(extent(Ta));
// tie merge loop nest and increase cache locality
tie(da,d1,d2,R) = tie(sqrt(Ta)
, log(Sa/Xa) + (sqr(va)x@.5f+ra)*Ta/(vax*da)
, dl-vaxda
, Saxnormcdf (d1)- Xaxexp(-ra*Ta)*normcdf (d2)
)5
return R;
)

300f 36

Black and Scholes Option Pricing

Performance
150 B scalar [
- SSE2
o
- SSE2, 4 cores
AVX2, 4 cores.
Q 100 7 [
=)
<
>
~
9
(%)
T
50 I
0

1000000

Size

31 of 36

Black and Scholes Option Pricing

Performance with loop fusion

150 | p—]
N
A2
- SSE2, 4 cores.
AVX2. 4 cores
Q 100 7 [
=
[
>
<
9
&
50 | B
0
1000000
Size
320f36

LU Decomposition

Performance
8000 x 8000 LU decomposition
- A
100 S |
w /. - - .
a PR
(@] e T
@ ,’
O oOm *
3 .
g 50 5 //
> S
L
i —a- NT2
& - Intel MKL
0 | | | | | s |]
0 10 20 30 40 50
Number of cores
330f36

Talk Layout

Conclusion

340f36
e —

Let’s round this up!

Parallel Computing for Scientist

Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

Like regular language, EDSL needs informations about the hardware system

Integrating hardware descriptions as Generic components increases tools portability
and re-targetability

350f36
e —

http://www.github.com/MetaScale/nt2

Let’s round this up!

Parallel Computing for Scientist

Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

Like regular language, EDSL needs informations about the hardware system

Integrating hardware descriptions as Generic components increases tools portability
and re-targetability

Recent activity

Follow us on http://www.github.com/MetaScale/nt2
Prototype for single source GPU support

Toward a global generic approach to parallelism

350f36
e —

http://www.github.com/MetaScale/nt2

Thanks for your attention

	Introduction
	Efficiency
	Abstractions
	Tools
	Conclusion

