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Computer models in engineering

Context overview
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Model implemented under the form of a computer program
(e.g., a finite element model).
A single run of the program may be time- and resource-consuming.
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Computer models in engineering

Computer models in engineering

» XCRY factor/parameter space of the system

» f: X — R ~ performance or cost function (function of the outputs of the system)

» Main classes of problems:
1. Approximation of the performance of a system, from expensive evaluations

x; — f(x;), 1 < i< N, on a domain of interest
2. Optimization of the performance of a system, cost minimization...

x* = argmax f(x) or x* = argmin f(x)
xeX xeX

3. In presence of uncertain factors, estimation of a probability of failure
a’(x) = Px{xeX:f(x)>u}
where Px is some probability distribution on (X, B(X))

NB: this is a simplified view — most real problems have several performance functions, and
mix different objectives
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Computer models in engineering

Example 1/2 — Risk analysis

» Computer simulations to assess the probability of undesirable events

> A serious accident: loss of coolant in a
pressurized water nuclear reactor

> Under these conditions, temperature of fuel
rods can be described by
~ 50 dimensioning factors, which are not
known accurately

> Peak temperature can be estimated using
complex and time-consuming simulations

» f: X — R peak temp. as a function of

1300 dim. factors
---Lower bound
12008 _Egg;ﬁi‘:{‘:l > Objective: estimate a probability of
1100f —Reference exceeding a critical value
21000
e a=Px{f > u}
5 900r
o
é, 800k or a worst-case
5
= 700 M = sup f(x)
600" x€X
500"
4% 0 20 80 100 120

% 60
Time (s)
(Courtesy of CEA)
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Computer models in engineering

Example 2/2 — Design optimization

» Computer simulations to design a product or a process, in particular

> to find the best feasible values for design parameters (optimization problem)
> to minimize the probability of failure of a product

» To comply with European emissions
standards, the design parameters of
combustion engines have to be carefully
optimized

> The shape of intake ports controls airflow
characteristics, which have direct impact
on

> the performances of the engine
» emissions of NO, and CO

> f:X CRY — R performance as a
function of design parameters
(d =20 ~ 100)

» Computing f(x) is time-consuming Simulation of an intake port (Navier-Stokes equations)
(courtesy of Renault, Julien Villemonteix)

> Objective: estimate x* = argmax, f(x),
or x* = argmax, f(x) subject to
P{pollutant emissions < threshold} > ~
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Computer models in engineering

Distinct properties of computer experiments

» The performance/cost function f : X C RY — R is only known through
pointwise evaluations

> An evaluation of f is called a computer experiment. It consists in

> choosing an x € X

> running one or several deterministic computer programs to obtain the value f(x)

» Vf may also be known in rare cases
» The factor space X may be high-dimensional (typically 10 ~ 100)

» Evaluation of f may be expensive (e.g., several hours) = budget of experiments
is limited (typically < 1000)
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How to construct a good estimation procedure? Estimation from computer experiments

Estimation from computer experiments

> Let f : X — R be a continuous function defined on a compact domain X with
non-empty interior
(f corresponds to a computer program whose output is not a closed-form expression of
the inputs.)

> Objective: from a set of computer experiments, obtain an approximation of

f: X—=R
or  m(f) = minyex f(x) = f(x*)

or Ocu(f) = Px{f > u} = fX 1fs,dPx

> The result of a pointwise evaluation of f carries information about f and quantities
depending on f (in particular, m(f), a“(f)...)

> Expensive computer experiments: the number of evaluations is limited — m(f), a!(f), etc.
must be estimated using a fixed number, say N, of evaluations of f.
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How to construct a good estimation procedure? Estimation from computer experiments

The case of optimization

> In the context of rare events estimation and risk analysis, it is often desirable
to assess the worst-case performance of a system, that is, to determine

M = sup f(x)
xeX
or
=

= f may be non-convex

= this is a global optimization problem
» How to design a good optimization algorithm?

> In a context of risk analysis, and also in difficult economic environments, we want to
use an optimization algorithm that will provide a robust estimation of the global
optimum
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How to construct a good estimation procedure? The problem with local optimization methods

Why local optimization methods may not be satisfactory in the domain of
computer experiments?

» An illustrative example: consider

f: R2 —» R
x = f(x)=exp (1.8 (X[l] + X[Q])) + 5xqy + 6X[2]2 + 3sin (47TX[1])
> Objective: find an approximation of
x* = argmin f(x).
x€[—1,1]2

with a budget of N = 60 experiments
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How to construct a good estimation procedure? ~ The problem with local optimization methods

lllustrative example (continued)

Evaluations points using a Nelder-Mead algorithm

45

k{40

r135

r 130

— the algorithm converges to a local minimum (= 0.427) B

o 5 = = £ Haw
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How to construct a good estimation procedure? The problem with local optimization methods

This comes as no surprise (local search algorithm). But above all...
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How to construct a good estimation procedure? The problem with local optimization methods

This comes as no surprise (local search algorithm). But above all...

> after having spent the budget of (possibly expensive) evaluations, the behavior of
the function is only known in a small region of the search domain
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» the global behavior of the function is unknown
» potentially interesting regions have not been explored

E. Vazquez Journée Calcul et Simulation 4 juin 2014

14 /27



How to construct a good estimation procedure? The problem with local optimization methods

> In a context of expensive-to-evaluate functions and a small budget of evaluations, it
seems “safer” to achieve a balance between local search and exploration of the search
domain
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How to construct a good estimation procedure? The problem with local optimization methods

> In a context of expensive-to-evaluate functions and a small budget of evaluations, it
seems “safer” to achieve a balance between local search and exploration of the search
domain

» Uniform random sampling:

— minimum of evaluation results is &~ —5.823 (global minimum is ~ —5.845)
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How to construct a good estimation procedure? The problem with local optimization methods

> In a context of expensive-to-evaluate functions and a small budget of evaluations, it
seems “safer” to achieve a balance between local search and exploration of the search
domain

» Uniform random sampling:

— minimum of evaluation results is &~ —5.823 (global minimum is ~ —5.845)
» What is a robust optimization strategy? How to obtain such a strategy?
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How to construct a good estimation procedure? Worst-case strategies

The worst-case approach

> Let Ay be the class of all optimization strategies X, that query sequentially N
evaluations of f at points Xi,..., Xn.

» Define the error of approximation of a strategy X,, € Aw on f as
e(Xy, f) = mn(f) — m(f)

with An(f) = F(Xi) A - A F(Xn)

> Assume that f belongs to a class of functions F — prior information

=>» A first idea to define a notion of a good strategy is to consider robustness with
respect to a worst case
> Define the minimax risk

rminimax(]:) - L(ngf‘\/v fél—r.r) E(KN, f)

> A strategy X,,* that attains fminimax(F) is called an (optimal) minimax strategy

> X, has the best worst-case performance on F
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How to construct a good estimation procedure? Worst-case strategies

Example of a minimax strategy: case of Lipschitz functions

> Recall that a function f : X — R is Lipschitz continuous if there exists K > 0 such
that, for all x; and x2 in X,

If(x1) = f(x)| < K|x1 — xal|.

(Any such K is referred to as a Lipschitz constant for the function f.)

> Let F be the class of all Lipschitz continuous functions X — R , with Lipschitz
constant K
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How to construct a good estimation procedure? Worst-case strategies

Example of a minimax strategy: case of Lipschitz functions

» For any strategy X,,, define the fill distance as

hy =sup  min |X*X|
x€X =1

» For any X, € Ay and any f € F,
e(Xy, f) = F(X) A AF(Xn) — F(x7) < F(Xix) — F(x") < Kh,
where X;+ is the nearest point to x*

» Thus, for any X, € An, supscre(Xy,f) < Kh,
» For any X, there exists a function f € F such that

8()7(,\,, f) = KhN

Thus,
sup £(Xy, f) = Khn
feFr
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How to construct a good estimation procedure? Lipschitzian optimization
Example of a minimax strategy: case of Lipschitz functions

Q Consequence: a minimax strategy minimizes hy
— sample points have to be uniformly distributed over the search domain

Q Ford=1VX,, hy > AXL — the optimal strategy is the uniform sampling:

(N+1)

B _ g IX]
rmlmmax(f) - K(N+1)

Q For d > 1, use a space-filling design, e.g.., Maximin Latin Hypercube Sampling
[McKay, Conover and Beckman (1979)] is an easy procedure that will generally
provide good suboptimal designs

1005100510051

Example of a maximin Latin hypercube sampling of size n = 100 in dimension d = 8
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How to construct a good estimation procedure? Lipschitzian optimization

The worst-case approach

U Consequence: for Lipschitz continuous functions, the minimax strategy consists in
having sample points uniformly distributed over the search domain

U Here, the optimal strategy is non-adaptive!

Q It may be more satisfying to achieve a balance between exploration of the search
domain and local search in promising regions (good performance on worst cases and
good convergence rate)

O Worst-case setting: appropriate framework to assess the performance of an
optimization algorithm?

Q We need to know how an optimization algorithm performs for “typical” functions f
not corresponding to worst cases

Q A classical approach is to adopt an average-case point of view
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Average-case approach to the problem of optimization Main ideas

3. Average-case approach to the problem of optimization
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Average-case approach to the problem of optimization Main ideas
Average-case approach

> Average-case — introduction of a probability space (2, B, Pg)

> We consider methods where f is seen as a sample path of a real-valued random process &
defined on (Q, B, Po) with parameter in X
— there exists w € Q such that

f= 5(‘“’ )

» From a Bayesian decision-theoretic point of view, £ represents prior knowledge about f

All real functions

> A good strategy is a strategy that achieves, or gets close to, the optimal average risk

Faverage ‘= ),(Nigf‘\m EO (G(L(N’ é))

where Eg denotes the expectation with respect to Py
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Average-case approach to the problem of optimization Expected Improvement

Expected Improvement [Mockus et al. 78, Schonlau et al. 96, Jones et al. 98]

> The optimal Bayesian one-step lookahead strategy for the problem of optimization
corresponds to choosing each new evaluation point according to

Xn+1 = argminE, (M1 — m| Xpr1 = x)
xeX

= argminE, (Mpt1 | Xng1 = x)
xeX

= argminE, (Mp A E(Xnt1) | Xot1 = x)
xeX
= argminE, (0 A (§(Xnt1) — M) | Xnp1 = x)
xeX
= arngaxp,,(X) i= En ((Mn — €(Xn+1))+ | Xn1 = x)
xe
with
> E, conditional expectation wrt £(X1), ..., &(Xn)
> Mo = E(X1) A AE(Xn),
> z = max(z,0)
> The sampling criterion p, is the expected improvement (EI)
— average excursion of £(x) below the current minimum of past evaluation results
> A well-known Bayesian optimization algorithm

> proposed by Mockus et al.
> popularized by the EGO algorithm of Jones et al.
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Average-case approach to the problem of optimization Expected Improvement

Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]

» Assume ¢ is a Gaussian process, with known mean and covariance functions

» Then, pn(x) has a closed-form expression:

pn(x) = v (mn —&(x; X,), Uﬁ(X)) ’
where
Yz,s) = {ﬁ‘b’ (%) +20(%) >0
max (z,0) o0

and &,(x; X,) and 02(x) are the kriging predictor and the kriging variance of £(x)
(Matheron, 1960) — see illustrating figure below.

» The EI algorithm:

X1 = Xinit ,
Xnt1 = argmax pa(x), n>1,
xeX
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Expected Improvement

Average-case approach to the problem of optimization

Global optimization based on El
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Average-case approach to the problem of optimization

Global optimization based on El
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Average-case approach to the problem of optimization Expected Improvement

Global optimization based on El
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Average-case approach to the problem of optimization Expected Improvement

Global optimization based on El
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Average-case approach to the problem of optimization

Global optimization based on El
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Average-case approach to the problem of optimization Expected Improvement

Global optimization based on El
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Average-case approach to the problem of optimization

Global optimization based on El
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Average-case approach to the problem of optimization Expected Improvement

Global optimization based on El
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Average-case approach to the problem of optimization Expected Improvement
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—
X2t
o
QU
o
50
o —4r

|
(©2]

0.5 1

I
'_\
I
o
&
X O

E. Vazquez Journée Calcul et Simulation 4 juin 2014 25 /27



Average-case approach to the problem of optimization Expected Improvement

Global optimization based on El
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Expected Improvement

Average-case approach to the problem of optimization
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Average-case approach to the problem of optimization Expected Improvement

Global optimization based on El
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Average-case approach to the problem of optimization Expected Improvement

ElI/EGO: 2D illustration
(f defined on Slide 12)

| m, with N =60
LHS —5.823
DIRECT —5.839
EI/EGO —5.845
Global minimum —5.845
NB: Global minimum found by the El algorithm in only 31 evaluations (abs. tol. 1.107%)
oy <@ =, «T» T 9aC
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Summing up

Summing up

Global optimization based on El

» Particularly interesting in the context of expensive-to-evaluate functions, very useful
and effective in practical situations

> A great number of applications can be found in the literature (aeronautics,
chemistry, energy...)

» Some theoretical results on the convergence of these algorithms:
Vazquez & Bect 2010, Bull 2011...

» Efficient implementation based on SMC techniques: Benassi, Bect, Vazquez 2013

Concluding remarks
> In the context expensive simulations, Bayesian strategies show very good
performances with respect to alternative approaches

> Bayesian strategies can be used for global optimization, estimation of probabilities of
failure, quantile estimation...
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