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processus aléatoires gaussiens, optimisation)

Emmanuel Vazquez

SUPELEC, Gif-sur-Yvette, France

Journée Calcul et Simulation
4 juin 2014

E. Vazquez Journée Calcul et Simulation 4 juin 2014 1 / 27



Outline

1. Computer models in engineering

2. How to construct a good estimation procedure?
Estimation from computer experiments
The problem with local optimization methods
Worst-case strategies
Lipschitzian optimization

3. Average-case approach to the problem of optimization
Main ideas
Expected Improvement

4. Summing up

E. Vazquez Journée Calcul et Simulation 4 juin 2014 2 / 27



Computer models in engineering

1. Computer models in engineering

E. Vazquez Journée Calcul et Simulation 4 juin 2014 3 / 27



Computer models in engineering

Context overview
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Model implemented under the form of a computer program
(e.g., a finite element model).

A single run of the program may be time- and resource-consuming.
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Computer models in engineering

Computer models in engineering

◮ X ⊆ R
d
 factor/parameter space of the system

◮ f : X → R  performance or cost function (function of the outputs of the system)

◮ Main classes of problems:
1. Approximation of the performance of a system, from expensive evaluations

xi 7→ f (xi ), 1 ≤ i ≤ N, on a domain of interest

2. Optimization of the performance of a system, cost minimization...

x
⋆ = argmax

x∈X

f (x) or x
⋆ = argmin

x∈X

f (x)

3. In presence of uncertain factors, estimation of a probability of failure

αu(x) := PX{x ∈ X : f (x) > u}

where PX is some probability distribution on (X,B(X))

NB: this is a simplified view → most real problems have several performance functions, and
mix different objectives
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Computer models in engineering

Example 1/2 – Risk analysis
◮ Computer simulations to assess the probability of undesirable events
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◮ A serious accident: loss of coolant in a
pressurized water nuclear reactor

◮ Under these conditions, temperature of fuel
rods can be described by
∼ 50 dimensioning factors, which are not
known accurately

◮ Peak temperature can be estimated using
complex and time-consuming simulations

◮ f : X → R peak temp. as a function of
dim. factors

◮ Objective: estimate a probability of
exceeding a critical value

α = PX{f ≥ u}

or a worst-case

M = sup
x∈X

f (x)
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Computer models in engineering

Example 2/2 – Design optimization

◮ Computer simulations to design a product or a process, in particular

◮ to find the best feasible values for design parameters (optimization problem)
◮ to minimize the probability of failure of a product

◮ To comply with European emissions
standards, the design parameters of
combustion engines have to be carefully
optimized

◮ The shape of intake ports controls airflow
characteristics, which have direct impact
on

◮ the performances of the engine
◮ emissions of NOx and CO

◮ f : X ⊂ R
d → R performance as a

function of design parameters
(d = 20 ∼ 100)

◮ Computing f (x) is time-consuming

◮ Objective: estimate x⋆ = argmaxx f (x),
or x⋆ = argmaxx f (x) subject to
P{pollutant emissions ≤ threshold} > γ

Simulation of an intake port (Navier-Stokes equations)
(courtesy of Renault, Julien Villemonteix)
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Computer models in engineering

Distinct properties of computer experiments

◮ The performance/cost function f : X ⊆ R
d → R is only known through

pointwise evaluations

◮ An evaluation of f is called a computer experiment. It consists in

◮ choosing an x ∈ X

◮ running one or several deterministic computer programs to obtain the value f (x)

◮ ∇f may also be known in rare cases

◮ The factor space X may be high-dimensional (typically 10 ∼ 100)

◮ Evaluation of f may be expensive (e.g., several hours) ➟ budget of experiments
is limited (typically < 1000)
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How to construct a good estimation procedure? Estimation from computer experiments

Estimation from computer experiments

◮ Let f : X → R be a continuous function defined on a compact domain X with
non-empty interior

(f corresponds to a computer program whose output is not a closed-form expression of
the inputs.)

◮ Objective: from a set of computer experiments, obtain an approximation of

f : X → R

or m(f ) = minx∈X f (x) = f (x⋆)

or αu(f ) = PX{f > u} =
∫
X
1f>udPX

. . .

◮ The result of a pointwise evaluation of f carries information about f and quantities
depending on f (in particular, m(f ), αu(f ). . . )

◮ Expensive computer experiments: the number of evaluations is limited → m(f ), αu(f ), etc.
must be estimated using a fixed number, say N, of evaluations of f .
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How to construct a good estimation procedure? Estimation from computer experiments

The case of optimization

◮ In the context of rare events estimation and risk analysis, it is often desirable
to assess the worst-case performance of a system, that is, to determine

M = sup
x∈X

f (x)

or
m = inf

x∈X

f (x)

➟ f may be non-convex

➟ this is a global optimization problem

◮ How to design a good optimization algorithm?

◮ In a context of risk analysis, and also in difficult economic environments, we want to
use an optimization algorithm that will provide a robust estimation of the global
optimum
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How to construct a good estimation procedure? The problem with local optimization methods

Why local optimization methods may not be satisfactory in the domain of
computer experiments?

◮ An illustrative example: consider

f : R
2 → R

x 7→ f (x) = exp
(
1.8

(
x[1] + x[2]

))
+ 5x[1] + 6x[2]

2 + 3 sin
(
4πx[1]

)

◮ Objective: find an approximation of

x
⋆ = argmin

x∈[−1,1]2
f (x) .

with a budget of N = 60 experiments
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How to construct a good estimation procedure? The problem with local optimization methods

Illustrative example (continued)

Evaluations points using a Nelder-Mead algorithm
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→ the algorithm converges to a local minimum (≈ 0.427)
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How to construct a good estimation procedure? The problem with local optimization methods

This comes as no surprise (local search algorithm). But above all...

◮ after having spent the budget of (possibly expensive) evaluations, the behavior of
the function is only known in a small region of the search domain

◮ the global behavior of the function is unknown

◮ potentially interesting regions have not been explored
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How to construct a good estimation procedure? The problem with local optimization methods

◮ In a context of expensive-to-evaluate functions and a small budget of evaluations, it
seems“safer” to achieve a balance between local search and exploration of the search
domain

◮ Uniform random sampling:

→ minimum of evaluation results is ≈ −5.823 (global minimum is ≈ −5.845)

◮ What is a robust optimization strategy? How to obtain such a strategy?
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How to construct a good estimation procedure? Worst-case strategies

The worst-case approach

◮ Let AN be the class of all optimization strategies X
N

that query sequentially N

evaluations of f at points X1, . . . ,XN .

◮ Define the error of approximation of a strategy X
N
∈ AN on f as

ε(X
N
, f ) = m̂N(f )−m(f )

with m̂N(f ) = f (X1) ∧ · · · ∧ f (XN)

◮ Assume that f belongs to a class of functions F → prior information

➜ A first idea to define a notion of a good strategy is to consider robustness with
respect to a worst case

◮ Define the minimax risk

rminimax(F) = inf
X
N
∈AN

sup
f∈F

ε(X
N
, f )

◮ A strategy X
N

⋆ that attains rminimax(F) is called an (optimal) minimax strategy

◮ X
N

⋆ has the best worst-case performance on F
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How to construct a good estimation procedure? Worst-case strategies

Example of a minimax strategy: case of Lipschitz functions

◮ Recall that a function f : X → R is Lipschitz continuous if there exists K ≥ 0 such
that, for all x1 and x2 in X,

|f (x1)− f (x2)| ≤ K‖x1 − x2‖.

(Any such K is referred to as a Lipschitz constant for the function f .)

◮ Let F be the class of all Lipschitz continuous functions X → R , with Lipschitz
constant K
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How to construct a good estimation procedure? Worst-case strategies

Example of a minimax strategy: case of Lipschitz functions

◮ For any strategy X
N
, define the fill distance as

hN = sup
x∈X

min
i=1,...,N

|x − Xi |

◮ For any X
N
∈ AN and any f ∈ F ,

ε(X
N
, f ) = f (X1) ∧ · · · ∧ f (XN)− f (x⋆) ≤ f (Xi⋆)− f (x⋆) ≤ KhN ,

where Xi⋆ is the nearest point to x⋆

◮ Thus, for any X
N
∈ AN , supf∈F ε(X

N
, f ) ≤ Khn

◮ For any X
N
, there exists a function f ∈ F such that

ε(X
N
, f ) = KhN

Thus,
sup
f∈F

ε(X
N
, f ) = KhN
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How to construct a good estimation procedure? Lipschitzian optimization

Example of a minimax strategy: case of Lipschitz functions

❑ Consequence: a minimax strategy minimizes hN
→ sample points have to be uniformly distributed over the search domain

❑ For d = 1, ∀X
N
, hN ≥ |X |

(N+1)
=⇒ the optimal strategy is the uniform sampling:

rminimax(F) = K
|X |

(N+1)

❑ For d > 1, use a space-filling design, e.g.., Maximin Latin Hypercube Sampling
[McKay, Conover and Beckman (1979)] is an easy procedure that will generally
provide good suboptimal designs
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Example of a maximin Latin hypercube sampling of size n = 100 in dimension d = 8
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How to construct a good estimation procedure? Lipschitzian optimization

The worst-case approach

❑ Consequence: for Lipschitz continuous functions, the minimax strategy consists in
having sample points uniformly distributed over the search domain

❑ Here, the optimal strategy is non-adaptive!

❑ It may be more satisfying to achieve a balance between exploration of the search
domain and local search in promising regions (good performance on worst cases and
good convergence rate)

❑ Worst-case setting: appropriate framework to assess the performance of an
optimization algorithm?

❑ We need to know how an optimization algorithm performs for “typical” functions f
not corresponding to worst cases

❑ A classical approach is to adopt an average-case point of view
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Average-case approach to the problem of optimization Main ideas

3. Average-case approach to the problem of optimization
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Average-case approach to the problem of optimization Main ideas

Average-case approach

◮ Average-case → introduction of a probability space (Ω,B,P0)

◮ We consider methods where f is seen as a sample path of a real-valued random process ξ
defined on (Ω,B,P0) with parameter in X

→ there exists ω ∈ Ω such that
f = ξ(ω, ·)

◮ From a Bayesian decision-theoretic point of view, ξ represents prior knowledge about f

All real functions

Prior ξ

Unknown function f

◮ A good strategy is a strategy that achieves, or gets close to, the optimal average risk

raverage := inf
X
N
∈AN

E0 (ǫ(XN
, ξ))

where E0 denotes the expectation with respect to P0
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Average-case approach to the problem of optimization Expected Improvement

Expected Improvement [Mockus et al. 78, Schonlau et al. 96, Jones et al. 98]

◮ The optimal Bayesian one-step lookahead strategy for the problem of optimization
corresponds to choosing each new evaluation point according to

Xn+1 = argmin
x∈X

En (m̂n+1 −m | Xn+1 = x)

= argmin
x∈X

En (m̂n+1 | Xn+1 = x)

= argmin
x∈X

En (m̂n ∧ ξ(Xn+1) | Xn+1 = x)

= argmin
x∈X

En (0 ∧ (ξ(Xn+1)− m̂n) | Xn+1 = x)

= argmax
x∈X

ρn(x) := En

(
(m̂n − ξ(Xn+1))+

∣∣ Xn+1 = x
)

with

◮ En conditional expectation wrt ξ(X1), . . . , ξ(Xn)
◮ m̂n = ξ(X1) ∧ · · · ∧ ξ(Xn),
◮ z+ = max(z, 0)

◮ The sampling criterion ρn is the expected improvement (EI)

→ average excursion of ξ(x) below the current minimum of past evaluation results

◮ A well-known Bayesian optimization algorithm

◮ proposed by Mockus et al.
◮ popularized by the EGO algorithm of Jones et al.
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Average-case approach to the problem of optimization Expected Improvement

Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]

◮ Assume ξ is a Gaussian process, with known mean and covariance functions

◮ Then, ρn(x) has a closed-form expression:

ρn(x) = γ
(
mn − ξ̂n(x ;Xn

), σ2
n(x)

)
,

where

γ(z , s) =

{√
s Φ′

(
z√
s

)
+ z Φ

(
z√
s

)
if s > 0,

max (z , 0) if s = 0.

and ξ̂n(x ;Xn
) and σ2

n(x) are the kriging predictor and the kriging variance of ξ(x)
(Matheron, 1960) → see illustrating figure below.

◮ The EI algorithm:






x1 = xinit ,

Xn+1 = argmax
x∈X

ρn(x) , n ≥ 1 ,
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Average-case approach to the problem of optimization Expected Improvement

Global optimization based on EI
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Average-case approach to the problem of optimization Expected Improvement

EI/EGO: 2D illustration
(f defined on Slide 12)
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m̂n with N = 60

LHS −5.823
DIRECT −5.839
EI/EGO −5.845
Global minimum −5.845

NB: Global minimum found by the EI algorithm in only 31 evaluations (abs. tol. 1.10−4)
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Summing up

Summing up

Global optimization based on EI

◮ Particularly interesting in the context of expensive-to-evaluate functions, very useful
and effective in practical situations

◮ A great number of applications can be found in the literature (aeronautics,
chemistry, energy...)

◮ Some theoretical results on the convergence of these algorithms:
Vazquez & Bect 2010, Bull 2011...

◮ Efficient implementation based on SMC techniques: Benassi, Bect, Vazquez 2013

Concluding remarks

◮ In the context expensive simulations, Bayesian strategies show very good
performances with respect to alternative approaches

◮ Bayesian strategies can be used for global optimization, estimation of probabilities of
failure, quantile estimation...
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