ALICE au LHC: la thermodynamique de la matière en interaction forte

« In high-energy physics we have concentrated on experiments in which we distributed a higher and higher amount of energy into a region with smaller and smaller dimensions. In order to study the question of 'vacuum' we must turn in a different direction; we should investigate some bulk phenomena by distributing high energy over a relatively large volume »

-T.D. Lee, Rev. Mod. Phys. 47 (1975)

Rappel

Les objectifs scientifiques du programme ions lourds au LHC

Thermodynamique de la matière en interaction forte

Comment la complexité de la matière émerge de la dynamique de l'interaction forte

Thermodynamique de la matière et interaction forte

QCD statistique

collisions ions lourds

Les faits établis: exp

 Aux températures du LHC la matière a les propriétés d'un liquide* parfait**

The Quark-Gluon Plasma, a nearly perfect fluid

- L. Cifarelli¹, L.P. Csernai² and H. Stöcker³ DOI: 10.1051/epn/2012206
- Dipartimento di Fisica, Universita di Bologna, 40126 Bologna, Italy;
- ² Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway;
- ∎ ³GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

We are living in interesting times, where the World's largest accelerator, the Large Hadron Collider, has its most dominant successes in Nuclear Physics: collective matter properties of the Quark-Gluon Plasma (QGP) are studied at a detail which is not even possible for conventional, macro scale materials.

- * en interaction forte
- ** non-dissipatif

QGP

•	est fortement couplé	v_2 , v_1
•	possède un libre parcours moyen très petit	η/S
•	démontre un important degré de collectivité	β , v_n
•	absorbe une fraction significative des partons de haute énergie	R_AA

Les faits établis: théorie

 transition douce* d'un gas de hadrons vers QGP (Z₃ symétrie); symétrie chirale restaurée**

* pas une transition de phase, pas SB

** les quarks retrouvent leur masse intrinsèque (Higgs)

Dernières Nouvelles: $T_C = 154 \pm 9 \text{ MeV}$

-A. Bazavov et al., Phys. Rev. D90 (2014) 094503

... ça se corse !

Le mandat de ALICE

Etablir les propriétés fondamentales de la matière en interaction forte et à haute au travers de mesures de precision, complètes*

* $p_t \sim T \oplus PID \oplus p_t \gg \Lambda_{QCD}$

11 Y. Schutz @ LAL, 02/2015

Stratégie standard

• Grand et dense: physique des ions lourds

• Petit et dilué: mesures de référence

Stratégie standard

• Grand et dense: physique des ions lourds

AA → pQCD + Npdf + FF + collectivité

- Petit et dilué: mesures de référence
 - ▶ $pp \rightarrow pQCD + pdf + FF$
 - ▷ pA → pQCD + Npdf + FF

Mais ... High M pp/pA

- production des particules
- spectres
- rayons HBT
- Ridges
- suppression des quarkonia

Vers un nouveau paradigme

Collectivité partout !

Une approche expérimentale et théorique cohérente de QCD statistique de e+e-à AA

Questions ouvertes

Questions...

- IS à LHC: champs classiques de gluons ? faiblement ou fortement couplés ?
- dynamiques: de IS vers un liquide hydro en 0.5 fm/c
- DoF: un milieu sans quasi-particules ? tout près de T_H ? hadronisation ?

soft: $p_T \sim T$, Λ_{QCD} teste le milieu

QGP-hadronization,...nucléosynthèse

production de hadrons

augmentation S, ok suppression K*

suppression p augmentation d

???

production de hadrons

7 ordres de grandeur p, d, noyaux \blacksquare T_H = 155 MeV \blacksquare

production de hadrons

$< p_t > v_s M$

pp: ≠ superposition incohérente d'interactions multiples de partons (CR)

pA: ≠ superposition incohérente de collisions pp (EPOS + hydro)

collectivité partout ? Modèles !

Ta Panta Rhei (Τα Πάντα ῥεῖ)

Blue shift: flow radial

Flow radial

p-Pb and pp: gradient radial (plus fort)!

p-p: mécanisme FS singe flow radial !!

27 Y. Schutz @ LAL, 02/2015

Baryon & Meson léger

spectres + PID

9.0 Batio

ALICE \s_{NN}=2.76 TeV

• 0-5% Pb-Pb

 $\frac{K^{+} + K^{-}}{\pi^{+} + \pi^{-}}$

0-5% Pb-Pb

Kraków
Fries et al

FPOS

Baryon & Meson étrange

ALICE \s_{NN}=2.76 TeV

• 0-5% Pb-Pb

A DD

 $\frac{K^{+} + K^{-}}{\pi^{+} + \pi^{-}}$

0-5% Pb-Pb

- Kraków

••••• Fries et al.

Baryon & Meson pPb pareil !

Baryon & Meson

31 Y. Schutz @ LAL, 02/2015

Baryon & Meson

effets collectifs: flow radial +

Masse plutôt que # quark

32 Y. Schutz @ LAL, 02/2015

Heavy-ion collisions 4 Hydrodynamics

ɛ2 : géometrie
(paramètre d'impact)
liquide + dissipation
minimale
v2 : dans l'espave des impulsions

Flow elliptique

hadronization par coalescence de q \rightarrow q DoF à T > T_H?

Flow elliptique

hadronization par coalescence de q \rightarrow q DoF à T > T_H?

Flow elliptique

pPb: flow hydro, pareil ! le succès gênant de hydro

37 Y. Schutz @ LAL, 02/2015

The Big (Bang) story

n flow

Dissipation in the perfect liquid is minimal:

QGP transparent aux fluctuations quantiques dans IS

IS: pure champ de jauge faiblement couplé + fluctuations quantiques hydro non dissipatif + dynamique des

champs classiques

n flow

Dissipation in the perfect liquid is minimal:

QGP transparent aux fluctuations quantiques dans IS

hydro non dissipatif + dynamique des champs classiques

40 Y. Schutz @ LAL, 02/2015

n flow

Analyse des fluctuations permet d'accéder aux propriétés du matériau

hard: $p_{T, m_T} \gg T$, Λ_{QCD}

sonde QGP à grande résolution (DoF)

hard: $p_{T, m_T} \gg T$, Λ_{QCD}

Transport de partons dans QGP: couleur, saveur, masse

RAA

jets « perdent de l'énergie »

Raa

Où est rayonnée l'énergie perdue ?

$A = f(\sqrt{s}, T, E_{jet}, L_{milieu})$

Quelles contraintes quantitatives sur les propriétés du milieu ?

Théorie et expérience: même langage ?

Existe-t-il une approche expérimentale pour discriminer aspect perturbatif et couplage fort ?

RpA

Pas d'effet de milieu FS dans pPb ??

Raa: D vs π

Effet charge de couleur (g vs q)?

Raa: D vs B

Radiatif ou collisions ?

Heavy Flavour: c

Flow ? coalescence ?

la saga quarkonia ...

Quarkonia: c

processus dur ⊕ écrantage de couleur ⊕ coalescence

▷ c déconfinés dans QGP → hadronisation statistique ?

52 Y. Schutz @ LAL, 02/2015

RAA & V2

Quarkonia: c

▷ c déconfinés dans QGP → hadronisation statistique ?

53 Y. Schutz @ LAL, 02/2015

... et pour conclure

Un nouveau chapitre du manuel de référence QCD

La physique de l'équilibre dans QCD

Comment est réalisée une dissipation minimale ?

De quoi est fait le QGP ?

« It is made of quarks and gluons»

- Frank Wilczek, QM2014 -