
 Perspectives for a WIMP discovery
Thomas Hambye

Univ. of Brussels (ULB), Belgium

Orsay-LAL 14/03/2015



Gravitational evidences for dark matter

•  •  •  •  •  by hand

                                                                                                              DM is neutral, stable (                             ), cold,                         , has constrained 
                                                                                                      cross section on Nucleon, produces constrained fluxes of cosmic rays, 

 colliders, BBN, ....

τDM > 1026 sec

                                           but this still leaves an enormous freedom for the DM particle (mass, 
 spin, interactions, stabilization mechanism, ...) 

‐At galactic scale: velocity distribution of stars

‐At galaxy cluster scale: ‐velocity distribution of galaxies
           ‐bullet cluster

‐At cosmological scales: CMB data (WMAP, Planck, ...), 
                                      supernovae,....

lead consistently to:  ΩDM ! 26%

ΩDM ! 26%



DM thermal relic density scenario (WIMP)

cannot stay for long in thermal equilibr. once

once                   : freeze out of DM particle number

       for electroweak couplings or 
 couplings of order unity:

ΩDM ! 26%

nEq.
DM ∝ e−mDM/T

T < mDM

Γannih. < H

ΩDM ! 26%       requires

ΩDM ∝ 1/〈σannih.v〉

〈σannih.v〉 # 10−26 cm3/sec

nEq
DM

s

mDM/T

If DM has been in thermal equilibrium with SM particles short after big bang
expected as soon as: - Universe thermal bath had a period with 

most straightforward way to explain 

- SM-DM coupling not tiny λ ! 10−7 for mDM ∼ TeV

T ∼ mDM

mDM ∼ TeV

       great perspectives of discovery 

(Xenon1T, LZ, CTA, colliders, ...)



Most straightforward WIMP scale ~ TeV

examples: a fermion            DM doublet (              ):SU(2)L

 a fermion            DM triplet (           ):
YDM = 1/2

 a scalar            DM doublet (              ):
 a scalar            DM triplet (           ):

SU(2)L

SU(2)L

SU(2)L

YDM = 1/2

YDM = 0

YDM = 0

mDM = 1.1TeV

mDM ≥ 2.5TeV

mDM ≥ 540GeV

 around the corner!             (but not necessarily at LHC!)
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 WIMP scale could also be lower or higher

 if Fermi suppression, or driven by smaller couplings, or interplay of channels, or small mass splittings, ...

 if driven by larger couplings up to ~100 TeV: unitarity bound

see e.g. Cirelli, Strumia et al. ‘07

mDM = 3.1TeV



DM search: 3 main types of experiments

 Direct detection: DM-N collision:   Colliders: DM pair production:

 Indirect detection: cosmic rays from DM annihilation or decay:

  Monojets, 
         monophoton,

      monoW/Z,
            cascade decays,

........

Monojet – Limits on DM nucleon cross section
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Interpretation in effective field theory.

Collider experiments particullary sensitive to low M  .

S.D.: ¦ N < 10  40 cm2 better than non-collider experiments.
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Fig. 12 Inferred 90% CL limits on (a) the spin-independent and (b) spin-dependent WIMP–nucleon scattering cross section
as a function of DM mass mχ for different operators (see Sect. 1). Results from direct-detection experiments for the spin-
independent [127–133] and spin-dependent [134–138] cross section, and the CMS (untruncated) results [14] are shown for
comparison. (c) The inferred 95% CL limits on the DM annihilation rate as a function of DM mass. The annihilation rate is
defined as the product of cross section σ and relative velocity v, averaged over the DM velocity distribution (〈σ v〉). Results
from gamma-ray telescopes [125, 126] are also shown, along with the thermal relic density annihilation rate [25, 26].

of the ADD and WIMPs models. This is done separately for the different selections, and the one with the
most stringent expected limit is adopted as the nominal result. In the region with squark/gluino masses
below 800 GeV, SR7 provides the best sensitivity while SR9 provides the most stringent expected limits for
heavier squark/gluino masses. Figure 14 presents the final results. Gravitino masses below 3.5 × 10−4 eV,
3 × 10−4 eV, and 2 × 10−4 eV are excluded at 95% CL for squark/gluino masses of 500 GeV, 1 TeV, and
1.5 TeV, respectively. The observed limits decrease by about 9%–13% after considering the −1σ uncertainty
from PDF and scale variations in the theoretical predictions. These results are significantly better than
previous results at LEP [54] and the Tevatron [15], and constitute the most stringent bounds on the gravitino
mass to date. For very high squark/gluino masses, the partial width for the gluino or squark to decay into a
gravitino and a parton becomes more than 25% of its mass and the narrow-width approximation employed
is not valid any more. In this case, other decay channels for the gluino and squarks should be considered,
leading to a different final state. The corresponding region of validity of this approximation is indicated in
the figure. Finally, limits on the gravitino mass are also computed in the case of non-degenerate squarks and
gluinos (see Fig. 15). Scenarios with mg̃ = 4×mq̃, mg̃ = 2×mq̃, mg̃ = 1/2×mq̃, and mg̃ = 1/4×mq̃ have
been considered. In this case, 95% CL lower bounds on the gravitino mass in the range between 1×10−4 eV
and 5× 10−4 eV are set depending on the squark and gluino masses.



3 main types of phenomenological approaches

 Effective operators: most model independent approach

Explicit DM-SM mediator setups

 Explicit DM models



Effective operator approach

                    from determining and analysing the full 
                        series of effective operators quadratic in 
                       the DM field (or linear for a DM decay)

 is well justified for DM direct and indirect 
     detection, not necessarily for collider studies

DM

DM

SM

SM

>>

> >

 Indirect Det., Relic Density

 Colliders

 Direct Detect.



Effective oper. approach: fermion dark matter coupled to quarks

                    examples: vector and axial operators

O =
1

Λ2
ψ̄DMγµψDM q̄ γµq O =

1

Λ2
ψ̄DMγµγ5ψDM q̄ γµγ5q

                    spin-independent direct detect. spin-dependent direct detect.

  Direct Detect.:  

Λ ! 1TeV

  for          up to mDM

  Colliders:

  from monojets,
  mono-photon,
  mono-W, ...

Λ ! 10TeV

  for          

Λ ! 1TeV  Colliders:

  Direct Detect.:  

10GeV ! mDM ! 1TeV

Λ ! 600GeV

                    N.B.: Xenon1T will probe     effective scale values up to 3-4 times higher!Λ
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Fig. 10 Lower limits at 95% CL on the suppression scale M∗ are shown as a function of the WIMP mass mχ for (a) D1,
(b) D5, (c) D8, (d) D9, (e) D11 and (f) C5 operators, in each case for the most sensitive SR (SR7 for D1, D5, D8, SR9 for
D9, D11 and C5). The expected and observed limits are shown as dashed black and solid blue lines, respectively. The rising
green lines are the M" values at which WIMPs of the given mass result in the relic density as measured by WMAP [26],
assuming annihilation in the early universe proceeded exclusively via the given operator. The purple long-dashed line is
the 95% CL observed limit on M" imposing a validity criterion with a coupling strength of 1, the red dashed thin lines are
those for the maximum physical coupling strength (see Appendix A for further details).

and the coupling constants of the interaction, gi by

Mmed = f(gi,M!) .

For such a relation, an assumption has to be made about the interaction structure connecting the initial
state to the final state via the mediator particle. The simplest interaction structures are assumed in all cases.
The form of the function f connecting Mmed and M! depends then on the operator (see Appendix A). For
a given operator, one possible validity criterion is that the momentum transferred in the hard interaction,
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Fig. 10 Lower limits at 95% CL on the suppression scale M∗ are shown as a function of the WIMP mass mχ for (a) D1,
(b) D5, (c) D8, (d) D9, (e) D11 and (f) C5 operators, in each case for the most sensitive SR (SR7 for D1, D5, D8, SR9 for
D9, D11 and C5). The expected and observed limits are shown as dashed black and solid blue lines, respectively. The rising
green lines are the M" values at which WIMPs of the given mass result in the relic density as measured by WMAP [26],
assuming annihilation in the early universe proceeded exclusively via the given operator. The purple long-dashed line is
the 95% CL observed limit on M" imposing a validity criterion with a coupling strength of 1, the red dashed thin lines are
those for the maximum physical coupling strength (see Appendix A for further details).

and the coupling constants of the interaction, gi by

Mmed = f(gi,M!) .

For such a relation, an assumption has to be made about the interaction structure connecting the initial
state to the final state via the mediator particle. The simplest interaction structures are assumed in all cases.
The form of the function f connecting Mmed and M! depends then on the operator (see Appendix A). For
a given operator, one possible validity criterion is that the momentum transferred in the hard interaction,
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Fig. 12 Inferred 90% CL limits on (a) the spin-independent and (b) spin-dependent WIMP–nucleon scattering cross section
as a function of DM mass mχ for different operators (see Sect. 1). Results from direct-detection experiments for the spin-
independent [127–133] and spin-dependent [134–138] cross section, and the CMS (untruncated) results [14] are shown for
comparison. (c) The inferred 95% CL limits on the DM annihilation rate as a function of DM mass. The annihilation rate is
defined as the product of cross section σ and relative velocity v, averaged over the DM velocity distribution (〈σ v〉). Results
from gamma-ray telescopes [125, 126] are also shown, along with the thermal relic density annihilation rate [25, 26].

of the ADD and WIMPs models. This is done separately for the different selections, and the one with the
most stringent expected limit is adopted as the nominal result. In the region with squark/gluino masses
below 800 GeV, SR7 provides the best sensitivity while SR9 provides the most stringent expected limits for
heavier squark/gluino masses. Figure 14 presents the final results. Gravitino masses below 3.5 × 10−4 eV,
3 × 10−4 eV, and 2 × 10−4 eV are excluded at 95% CL for squark/gluino masses of 500 GeV, 1 TeV, and
1.5 TeV, respectively. The observed limits decrease by about 9%–13% after considering the −1σ uncertainty
from PDF and scale variations in the theoretical predictions. These results are significantly better than
previous results at LEP [54] and the Tevatron [15], and constitute the most stringent bounds on the gravitino
mass to date. For very high squark/gluino masses, the partial width for the gluino or squark to decay into a
gravitino and a parton becomes more than 25% of its mass and the narrow-width approximation employed
is not valid any more. In this case, other decay channels for the gluino and squarks should be considered,
leading to a different final state. The corresponding region of validity of this approximation is indicated in
the figure. Finally, limits on the gravitino mass are also computed in the case of non-degenerate squarks and
gluinos (see Fig. 15). Scenarios with mg̃ = 4×mq̃, mg̃ = 2×mq̃, mg̃ = 1/2×mq̃, and mg̃ = 1/4×mq̃ have
been considered. In this case, 95% CL lower bounds on the gravitino mass in the range between 1×10−4 eV
and 5× 10−4 eV are set depending on the squark and gluino masses.
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Fig. 12 Inferred 90% CL limits on (a) the spin-independent and (b) spin-dependent WIMP–nucleon scattering cross section
as a function of DM mass mχ for different operators (see Sect. 1). Results from direct-detection experiments for the spin-
independent [127–133] and spin-dependent [134–138] cross section, and the CMS (untruncated) results [14] are shown for
comparison. (c) The inferred 95% CL limits on the DM annihilation rate as a function of DM mass. The annihilation rate is
defined as the product of cross section σ and relative velocity v, averaged over the DM velocity distribution (〈σ v〉). Results
from gamma-ray telescopes [125, 126] are also shown, along with the thermal relic density annihilation rate [25, 26].

of the ADD and WIMPs models. This is done separately for the different selections, and the one with the
most stringent expected limit is adopted as the nominal result. In the region with squark/gluino masses
below 800 GeV, SR7 provides the best sensitivity while SR9 provides the most stringent expected limits for
heavier squark/gluino masses. Figure 14 presents the final results. Gravitino masses below 3.5 × 10−4 eV,
3 × 10−4 eV, and 2 × 10−4 eV are excluded at 95% CL for squark/gluino masses of 500 GeV, 1 TeV, and
1.5 TeV, respectively. The observed limits decrease by about 9%–13% after considering the −1σ uncertainty
from PDF and scale variations in the theoretical predictions. These results are significantly better than
previous results at LEP [54] and the Tevatron [15], and constitute the most stringent bounds on the gravitino
mass to date. For very high squark/gluino masses, the partial width for the gluino or squark to decay into a
gravitino and a parton becomes more than 25% of its mass and the narrow-width approximation employed
is not valid any more. In this case, other decay channels for the gluino and squarks should be considered,
leading to a different final state. The corresponding region of validity of this approximation is indicated in
the figure. Finally, limits on the gravitino mass are also computed in the case of non-degenerate squarks and
gluinos (see Fig. 15). Scenarios with mg̃ = 4×mq̃, mg̃ = 2×mq̃, mg̃ = 1/2×mq̃, and mg̃ = 1/4×mq̃ have
been considered. In this case, 95% CL lower bounds on the gravitino mass in the range between 1×10−4 eV
and 5× 10−4 eV are set depending on the squark and gluino masses.
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Fig. 1 Feynman diagrams for the production of weakly interacting massive particle pairs χχ̄ associated with a jet from
initial-state radiation of a gluon, g. (a) A contact interaction described with effective operators. (b) A simplified model with
a Z′ boson.

be produced directly at the LHC (see Fig. 1(a)). It is assumed here that the DM particle is either a Dirac

Table 1 Effective interactions coupling WIMPs to Standard Model quarks or gluons, following the formalism in Ref. [40],
where M! is the suppression scale of the interaction. Operators starting with a D describe Dirac fermion WIMPs, the ones
starting with a C are for scalar WIMPs and Ga

µν is the colour field-strength tensor.

Name Initial state Type Operator

C1 qq scalar
mq

M2
!

χ†χq̄q

C5 gg scalar 1
4M2

!

χ†χαs(Ga
µν)

2

D1 qq scalar
mq

M3
!

χ̄χq̄q

D5 qq vector 1
M2

!

χ̄γµχq̄γµq

D8 qq axial-vector 1
M2

!

χ̄γµγ5χq̄γµγ5q

D9 qq tensor 1
M2

!

χ̄σµνχq̄σµνq

D11 gg scalar 1
4M3

!

χ̄χαs(Ga
µν)

2

fermion or a scalar χ; the only difference for Majorana fermions is that certain interactions are not allowed
and that the cross sections for the allowed interactions are larger by a factor of four. Seven interactions are
considered (see Table 1), namely those described by the operators C1, C5, D1, D5, D8, D9, D11, following
the naming scheme in Ref. [40]. These operators describe different bilinear quark couplings to WIMPs,
qq̄ → χχ̄, except for C5 and D11, which describe the coupling to gluons, gg → χχ̄. The operators for
Dirac fermions and scalars in Ref. [40] fall into six categories with characteristic Emiss

T spectral shapes. The
representative set of operators for these six categories are C1, C5, D1, D5, D9, and D11, while D8 falls
into the same category as D5 but is listed explicitly in Table 1 because it is often used to convert LHC
results into limits on DM pair production. In the operator definitions in Table 1, M∗ is the suppression scale
of the interaction, after integrating out the heavy mediator particles. The use of a contact interaction to
produce WIMP pairs via heavy mediators is considered conservative because it rarely overestimates cross
sections when applied to a specific scenario for physics beyond the SM. Cases where this approach is indeed
optimistic are studied in Refs. [39, 41–45]. Despite the caveats related to the validity of the EFT approach
(see Appendix A), this formalism is used here, as it provides a framework for comparing LHC results to
existing direct or indirect DM searches. Within this framework, interactions of SM and DM particles are
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Figure 4: DM coupled to the Higgs. Regions of DM mass MDM and Higgs couplings (λDM, yDM,

yPDM): the orange region is excluded at 90% CL by ATLAS mono-jet searches at LHC8, with forecast

for LHC14 (dashed blue line); the grey region is excluded at 90% CL by LUX 2013 direct searches;

the blue region is excluded by the Higgs invisible width constraint Γh,inv/Γh < 20%. The green solid

curve corresponds to a thermal relic abundance via Higgs-coupling annihilation equal to the observed

DM density (the thick curve is the off-shell estimation; the thin curve is the on-shell computation).

• The pseudo-scalar coupling yPDM only produces the operator ON
11 = i"SDM · "q, which is spin-

dependent and suppressed by the transferred momentum "q:

cn10 ≈ cp10 ≈ 0.26
yPDMmN

M2
h

. (3.12)

As a consequence, there are no limits on perturbative values of yPDM.

Thermal abundance

The relic abundance is computed using the interaction in eq. (3.9), which contributes to DM an-

nihilation through s-channel Higgs exchange and through processes with two Higgs or longitudinal

gauge bosons in the final state. We include these annihilation channels in our computation. In the

case of fermionic DM, the approximation of keeping only the dimension-5 operator in eq. (3.9) is

justified as long as yDM " 0.5 (500GeV/MDM).

Results

In fig. 4 we compare the LHC sensitivity with current bounds, in the plane (DM mass, DM coupling

to h), finding the following results.

1. The bounds from direct detection are dominated by the LUX experiments (regions shaded in

grey). We see that direct detection experiments are severely constraining the scalar couplings

λDM, yDM, while the pseudo-scalar interaction is completely out of reach at the moment.

2. If MDM < Mh/2, the main constraint is due to the Higgs invisible width, Γh,inv/Γh ! 20%,

which gives λDM, yDM, yPDM
<∼ 10−2, taking Γh = 4.2 MeV for Mh = 125.6 GeV.
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                   very slow decay can be expected as for the proton
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a) First, obviously the operator must contain the DM field.

b) Secondly, in order for the operator to lead to a two-body
decay with a photon, it must not contain too many fields
(except eventually scalars that could be replaced by their
vacuum expectation values (vev)) and it must contain ei-
ther a hypercharge Fµν

Y or a SU(2)L Fµν
L field strength. If

the DM particle is neutral, as we will assume here, the
photon cannot come from a covariant derivative because
in the two body decays all fields are necessarily neutral.
One could eventually have a photon emitted from an op-
erator that contains a new U(1) gauge field that kinemati-
cally mix with the hypercharge gauge boson, L ! εFµν

Y F ′
µν

(rendering the various neutral particles to be effectively
milli-charged). We will not consider this possibility here.
It gives a range of bounds on the emission of γ-ray lines
which is similar to the one obtained below (see Ref. [14]
for details).

c) Thirdly, some operators can be related to other ones
through various relations, equations of motions, shift of a
derivative or use of the fact that the commutator of two co-
variant derivatives Dµ, Dν gives Fµν. However one must be
careful in using these relations. The criteria we apply here
is that through these relations an operator can be dropped
from the list only if in this way there is a one-to-one corre-
spondence between this operator and another one already
in the list. Otherwise both operators must be kept because
in general they give different ratios of γ-line to CRs.

Applying the criteria above there are only three possible
general dimension 5 structures, one for each of the three types
of DM particle we consider here, scalar, fermion or vector:
φDMFµνFµν, ψDMσµνψFµν, FDM

µν Fµνφ respectively. Specify-
ing what is the Fµν field strength one obtains only 9 possible
operators, 5 for a scalar candidate, and 2 for a fermion or vec-
tor candidate

O(5)YY
φDM

≡ φDMFY µνFµν
Y φDM = (1,0) A (1)

O(5)Y L
φDM

≡ φDMFLµνFµν
Y φDM = (3,0) B (2)

O(5)LL
φDM

≡ φDMFLµνFµν
L φDM = (1/3/5,0) Dm (3)

O(5)YY ′

φDM
≡ φDMFY µνFµν

Y ′ φDM = (1,0) Ax (4)

O(5)LY ′

φDM
≡ φDMFLµνFµν

Y ′ φDM = (3,0) Cx (5)

O(5)Y
ψDM ≡ ψ̄σµνψDMFµν

Y ψDM ·ψ = (1,0) Ax (6)

O(5)L
ψDM ≡ ψ̄σµνψDMFµν

L ψDM ·ψ = (3,0) Cx,m (7)

O(5)Y
VDM

≡ FDM
µν Fµν

Y φ φ = (1,0) Ax (8)

O(5)L
VDM

≡ FDM
µν Fµν

L φ φ = (3,0) Ex (9)

where φDM/ψDM denotes the multiplet whose neutral compo-
nent φ0

DM/ψ0
DM is the DM particle. By ”(n,Y )” we specify

what must be the size n of the SU(2)L multiplets and their hy-
percharge Y . F ′µν stands for a new possible low energy gauge
field and the vector DM operator FDM

µν stands for an abelian or

non-abelian DM field strength (in practice it will not be nec-
essary to make this distinction in the following). ψ and φ are
meant to be either SM fields when allowed by gauge invari-
ance or new low energy fields. The symbols A−Ex,m,v stand
for a classification of the operators’ possible astrophysical sig-
nals, and will be explained in Sec. IV.

As for the dimension 6 operators the number of possibilities
is also remarkably limited. Two general structures are singled
out for the scalar case and three for the fermion and vector
cases, leading to 7 scalar operators

O1YY
φDM

≡ φDMFY µνFµν
Y φ φDM ·φ = (1,0) A (10)

O1Y L
φDM

≡ φDMFLµνFµν
Y φ φDM ·φ = (3,0) B (11)

O1LL
φDM

≡ φDMFLµνFµν
L φ φDM ·φ = (1/3/5,0) Cx,m (12)

O1YY ′
φDM

≡ φDMFY µνFµν
Y ′ φ φDM ·φ = (1,0) Ax (13)

O1LY ′
φDM

≡ φDMFLµνFµν
Y ′ φ φDM ·φ = (3,0) Cx (14)

O2Y
φDM

≡ DµφDMDνφFµν
Y φDM ·φ = (1,0) Ax,m,v (15)

O2L
φDM

≡ DµφDMDνφFµν
L φDM ·φ = (3,0) Cx,m,v (16)

to 6 fermion operators

O1Y
ψDM

≡ ψ̄σµνψDMFµν
Y φ ψ̄ ·ψDM ·φ = (1,0) Ax,m (17)

O1L
ψDM

≡ ψ̄σµνψDMFµν
L φ ψ̄ ·ψDM ·φ = (3,0) Cx,m (18)

O2Y
ψDM

≡ Dµψ̄γνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (19)

O2L
ψDM

≡ Dµψ̄γνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (20)

O3Y
ψDM

≡ ψ̄γµDνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (21)

O3L
ψDM

≡ ψ̄γµDνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (22)

and to 5 vector operators

O1
VDM

≡ FDM
µν Fµρ

Y Fν
Y ′ρ Ax (23)

O2Y
VDM

≡ FDM
µν Fµν

Y φφ′ φ ·φ′ = (1,0) Ax (24)

O2L
VDM

≡ FDM
µν Fµν

L φφ′ φ ·φ′ = (3,0) Dx,m (25)

O3YY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
Y φ ·φ′ = (1,0) Ax,m (26)

O3LY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
L φ ·φ′ = (3,0) Dx,m. (27)

By DDM
µ we mean a covariant derivative that contains the DM

vector field.2
Along the operator criteria defined above, note that one

must still add to the list three types of operators, whose struc-
tures are somehow more involved.

First, a few operators that contain two covariant derivatives
on a same field. There are two structures of this kind for

2 In Ref. [11] an explicit example can be found of an accidental symmetry
setup leading to the operators of Eqs. (24) and (26). Note also that in
Ref. [15] there are examples of heavy scalar and heavy vector setups whose
exchange induces dimension 6 four-fermion interactions that at one loop
induce a ψDM → γν decay. The effective amplitude for this process is the
same as the ones that the dimension 5 operators of Eq. (6) or Eq. (7) give.
This exemplifies the fact, to keep in mind, that dimension 5 operators for a
decay can naturally have a “dimension 6 suppression” of the lifetime.

2

a) First, obviously the operator must contain the DM field.

b) Secondly, in order for the operator to lead to a two-body
decay with a photon, it must not contain too many fields
(except eventually scalars that could be replaced by their
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(rendering the various neutral particles to be effectively
milli-charged). We will not consider this possibility here.
It gives a range of bounds on the emission of γ-ray lines
which is similar to the one obtained below (see Ref. [14]
for details).
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meant to be either SM fields when allowed by gauge invari-
ance or new low energy fields. The symbols A−Ex,m,v stand
for a classification of the operators’ possible astrophysical sig-
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≡ φDMFLµνFµν
L φDM = (1/3/5,0) Dm (3)

O(5)YY ′

φDM
≡ φDMFY µνFµν

Y ′ φDM = (1,0) Ax (4)

O(5)LY ′

φDM
≡ φDMFLµνFµν

Y ′ φDM = (3,0) Cx (5)

O(5)Y
ψDM ≡ ψ̄σµνψDMFµν

Y ψDM ·ψ = (1,0) Ax (6)

O(5)L
ψDM ≡ ψ̄σµνψDMFµν

L ψDM ·ψ = (3,0) Cx,m (7)

O(5)Y
VDM

≡ FDM
µν Fµν

Y φ φ = (1,0) Ax (8)

O(5)L
VDM

≡ FDM
µν Fµν

L φ φ = (3,0) Ex (9)

where φDM/ψDM denotes the multiplet whose neutral compo-
nent φ0

DM/ψ0
DM is the DM particle. By ”(n,Y )” we specify

what must be the size n of the SU(2)L multiplets and their hy-
percharge Y . F ′µν stands for a new possible low energy gauge
field and the vector DM operator FDM

µν stands for an abelian or

non-abelian DM field strength (in practice it will not be nec-
essary to make this distinction in the following). ψ and φ are
meant to be either SM fields when allowed by gauge invari-
ance or new low energy fields. The symbols A−Ex,m,v stand
for a classification of the operators’ possible astrophysical sig-
nals, and will be explained in Sec. IV.

As for the dimension 6 operators the number of possibilities
is also remarkably limited. Two general structures are singled
out for the scalar case and three for the fermion and vector
cases, leading to 7 scalar operators

O1YY
φDM

≡ φDMFY µνFµν
Y φ φDM ·φ = (1,0) A (10)

O1Y L
φDM

≡ φDMFLµνFµν
Y φ φDM ·φ = (3,0) B (11)

O1LL
φDM

≡ φDMFLµνFµν
L φ φDM ·φ = (1/3/5,0) Cx,m (12)

O1YY ′
φDM

≡ φDMFY µνFµν
Y ′ φ φDM ·φ = (1,0) Ax (13)

O1LY ′
φDM

≡ φDMFLµνFµν
Y ′ φ φDM ·φ = (3,0) Cx (14)

O2Y
φDM

≡ DµφDMDνφFµν
Y φDM ·φ = (1,0) Ax,m,v (15)

O2L
φDM

≡ DµφDMDνφFµν
L φDM ·φ = (3,0) Cx,m,v (16)

to 6 fermion operators

O1Y
ψDM

≡ ψ̄σµνψDMFµν
Y φ ψ̄ ·ψDM ·φ = (1,0) Ax,m (17)

O1L
ψDM

≡ ψ̄σµνψDMFµν
L φ ψ̄ ·ψDM ·φ = (3,0) Cx,m (18)

O2Y
ψDM

≡ Dµψ̄γνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (19)

O2L
ψDM

≡ Dµψ̄γνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (20)

O3Y
ψDM

≡ ψ̄γµDνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (21)

O3L
ψDM

≡ ψ̄γµDνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (22)

and to 5 vector operators

O1
VDM

≡ FDM
µν Fµρ

Y Fν
Y ′ρ Ax (23)

O2Y
VDM

≡ FDM
µν Fµν

Y φφ′ φ ·φ′ = (1,0) Ax (24)

O2L
VDM

≡ FDM
µν Fµν

L φφ′ φ ·φ′ = (3,0) Dx,m (25)

O3YY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
Y φ ·φ′ = (1,0) Ax,m (26)

O3LY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
L φ ·φ′ = (3,0) Dx,m. (27)

By DDM
µ we mean a covariant derivative that contains the DM

vector field.2
Along the operator criteria defined above, note that one

must still add to the list three types of operators, whose struc-
tures are somehow more involved.

First, a few operators that contain two covariant derivatives
on a same field. There are two structures of this kind for

2 In Ref. [11] an explicit example can be found of an accidental symmetry
setup leading to the operators of Eqs. (24) and (26). Note also that in
Ref. [15] there are examples of heavy scalar and heavy vector setups whose
exchange induces dimension 6 four-fermion interactions that at one loop
induce a ψDM → γν decay. The effective amplitude for this process is the
same as the ones that the dimension 5 operators of Eq. (6) or Eq. (7) give.
This exemplifies the fact, to keep in mind, that dimension 5 operators for a
decay can naturally have a “dimension 6 suppression” of the lifetime.

for a scalar DM candidate:

for a fermion DM candidate:

for a spin-1 DM candidate:
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a) F irst, obviously the operator must contain the D M field.

b) Secondly, in order for the operator to lead to a two-body
decay with a photon, it must not contain too many fields
(except eventually scalars that could be replaced by their
vacuum expectation values (vev)) and it must contain ei-
ther a hypercharge Fµν

Y or a SU(2)L Fµν
L field strength. If

the D M particle is neutral, as we will assume here, the
photon cannot come from a covariant derivative because
in the two body decays all fields are necessarily neutral.
One could eventually have a photon emitted from an op-
erator that contains a new U(1) gauge field that kinemati-
cally mix with the hypercharge gauge boson, L ! εFµν

Y F ′
µν

(rendering the various neutral particles to be effectively
milli-charged). We will not consider this possibility here.
It gives a range of bounds on the emission of γ-ray lines
which is similar to the one obtained below (see Ref. [14]
for details).

c) Thirdly, some operators can be related to other ones
through various relations, equations of motions, shift of a
derivative or use of the fact that the commutator of two co-
variant derivatives Dµ, Dν gives Fµν. However one must be
careful in using these relations. The criteria we apply here
is that through these relations an operator can be dropped
from the list only if in this way there is a one-to-one corre-
spondence between this operator and another one already
in the list. Otherwise both operators must be kept because
in general they give different ratios of γ-line to C Rs.

A pplying the criteria above there are only three possible
general dimension 5 structures, one for each of the three types
of D M particle we consider here, scalar, fermion or vector:
φDMFµνFµν, ψDMσµνψFµν, FDM

µν Fµνφ respectively. Specify-
ing what is the Fµν field strength one obtains only 9 possible
operators, 5 for a scalar candidate, and 2 for a fermion or vec-
tor candidate

O(5)YY
φDM

≡ φDMFY µνFµν
Y φDM = (1,0) A (1)

O(5)Y L
φDM

≡ φDMFLµνFµν
Y φDM = (3,0) B (2)

O(5)LL
φDM

≡ φDMFLµνFµν
L φDM = (1/3/5,0) Dm (3)

O(5)YY ′

φDM
≡ φDMFY µνFµν

Y ′ φDM = (1,0) Ax (4)

O(5)LY ′

φDM
≡ φDMFLµνFµν

Y ′ φDM = (3,0) Cx (5)

O(5)Y
ψDM ≡ ψ̄σµνψDMFµν

Y ψDM ·ψ = (1,0) Ax (6)

O(5)L
ψDM ≡ ψ̄σµνψDMFµν

L ψDM ·ψ = (3,0) Cx,m (7)

O(5)Y
VDM

≡ FDM
µν Fµν

Y φ φ = (1,0) Ax (8)

O(5)L
VDM

≡ FDM
µν Fµν

L φ φ = (3,0) Ex (9)

where φDM/ψDM denotes the multiplet whose neutral compo-
nent φ0

DM/ψ0
DM is the D M particle. B y ”(n,Y )” we specify

what must be the size n of the SU(2)L multiplets and their hy-
percharge Y . F ′µν stands for a new possible low energy gauge
field and the vector D M operator FDM

µν stands for an abelian or

non-abelian D M field strength (in practice it will not be nec-
essary to make this distinction in the following). ψ and φ are
meant to be either SM fields when allowed by gauge invari-
ance or new low energy fields. The symbols A−Ex,m,v stand
for a classification of the operators’ possible astrophysical sig-
nals, and will be explained in Sec. I V .

A s for the dimension 6 operators the number of possibilities
is also remarkably limited. Two general structures are singled
out for the scalar case and three for the fermion and vector
cases, leading to 7 scalar operators

O1YY
φDM

≡ φDMFY µνFµν
Y φ φDM ·φ = (1,0) A (10)

O1Y L
φDM

≡ φDMFLµνFµν
Y φ φDM ·φ = (3,0) B (11)

O1LL
φDM

≡ φDMFLµνFµν
L φ φDM ·φ = (1/3/5,0) Cx,m (12)

O1YY ′
φDM

≡ φDMFY µνFµν
Y ′ φ φDM ·φ = (1,0) Ax (13)

O1LY ′
φDM

≡ φDMFLµνFµν
Y ′ φ φDM ·φ = (3,0) Cx (14)

O2Y
φDM

≡ DµφDMDνφFµν
Y φDM ·φ = (1,0) Ax,m,v (15)

O2L
φDM

≡ DµφDMDνφFµν
L φDM ·φ = (3,0) Cx,m,v (16)

to 6 fermion operators

O1Y
ψDM

≡ ψ̄σµνψDMFµν
Y φ ψ̄ ·ψDM ·φ = (1,0) Ax,m (17)

O1L
ψDM

≡ ψ̄σµνψDMFµν
L φ ψ̄ ·ψDM ·φ = (3,0) Cx,m (18)

O2Y
ψDM

≡ Dµψ̄γνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (19)

O2L
ψDM

≡ Dµψ̄γνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (20)

O3Y
ψDM

≡ ψ̄γµDνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (21)

O3L
ψDM

≡ ψ̄γµDνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (22)

and to 5 vector operators

O1
VDM

≡ FDM
µν Fµρ

Y Fν
Y ′ρ Ax (23)

O2Y
VDM

≡ FDM
µν Fµν

Y φφ′ φ ·φ′ = (1,0) Ax (24)

O2L
VDM

≡ FDM
µν Fµν

L φφ′ φ ·φ′ = (3,0) Dx,m (25)

O3YY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
Y φ ·φ′ = (1,0) Ax,m (26)

O3LY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
L φ ·φ′ = (3,0) Dx,m. (27)

B y DDM
µ we mean a covariant derivative that contains the D M

vector field.2

A long the operator criteria defined above, note that one
must still add to the list three types of operators, whose struc-
tures are somehow more involved.

F irst, a few operators that contain two covariant derivatives
on a same field. There are two structures of this kind for

2 In Ref. [11] an explicit example can be found of an accidental symmetry
setup leading to the operators of Eqs. (24) and (26). Note also that in
Ref. [15] there are examples of heavy scalar and heavy vector setups whose
exchange induces dimension 6 four-fermion interactions that at one loop
induce a ψDM → γν decay. The effective amplitude for this process is the
same as the ones that the dimension 5 operators of Eq. (6) or Eq. (7) give.
This exemplifies the fact, to keep in mind, that dimension 5 operators for a
decay can naturally have a “dimension 6 suppression” of the lifetime.

2

a) F irst, obviously the operator must contain the D M field.

b) Secondly, in order for the operator to lead to a two-body
decay with a photon, it must not contain too many fields
(except eventually scalars that could be replaced by their
vacuum expectation values (vev)) and it must contain ei-
ther a hypercharge Fµν

Y or a SU(2)L Fµν
L field strength. If

the D M particle is neutral, as we will assume here, the
photon cannot come from a covariant derivative because
in the two body decays all fields are necessarily neutral.
One could eventually have a photon emitted from an op-
erator that contains a new U(1) gauge field that kinemati-
cally mix with the hypercharge gauge boson, L ! εFµν

Y F ′
µν

(rendering the various neutral particles to be effectively
milli-charged). We will not consider this possibility here.
It gives a range of bounds on the emission of γ-ray lines
which is similar to the one obtained below (see Ref. [14]
for details).

c) Thirdly, some operators can be related to other ones
through various relations, equations of motions, shift of a
derivative or use of the fact that the commutator of two co-
variant derivatives Dµ, Dν gives Fµν. However one must be
careful in using these relations. The criteria we apply here
is that through these relations an operator can be dropped
from the list only if in this way there is a one-to-one corre-
spondence between this operator and another one already
in the list. Otherwise both operators must be kept because
in general they give different ratios of γ-line to C Rs.

A pplying the criteria above there are only three possible
general dimension 5 structures, one for each of the three types
of D M particle we consider here, scalar, fermion or vector:
φDMFµνFµν, ψDMσµνψFµν, FDM

µν Fµνφ respectively. Specify-
ing what is the Fµν field strength one obtains only 9 possible
operators, 5 for a scalar candidate, and 2 for a fermion or vec-
tor candidate

O(5)YY
φDM

≡ φDMFY µνFµν
Y φDM = (1,0) A (1)

O(5)Y L
φDM

≡ φDMFLµνFµν
Y φDM = (3,0) B (2)

O(5)LL
φDM

≡ φDMFLµνFµν
L φDM = (1/3/5,0) Dm (3)

O(5)YY ′

φDM
≡ φDMFY µνFµν

Y ′ φDM = (1,0) Ax (4)

O(5)LY ′

φDM
≡ φDMFLµνFµν

Y ′ φDM = (3,0) Cx (5)

O(5)Y
ψDM ≡ ψ̄σµνψDMFµν

Y ψDM ·ψ = (1,0) Ax (6)

O(5)L
ψDM ≡ ψ̄σµνψDMFµν

L ψDM ·ψ = (3,0) Cx,m (7)

O(5)Y
VDM

≡ FDM
µν Fµν

Y φ φ = (1,0) Ax (8)

O(5)L
VDM

≡ FDM
µν Fµν

L φ φ = (3,0) Ex (9)

where φDM/ψDM denotes the multiplet whose neutral compo-
nent φ0

DM/ψ0
DM is the D M particle. B y ”(n,Y )” we specify

what must be the size n of the SU(2)L multiplets and their hy-
percharge Y . F ′µν stands for a new possible low energy gauge
field and the vector D M operator FDM

µν stands for an abelian or

non-abelian D M field strength (in practice it will not be nec-
essary to make this distinction in the following). ψ and φ are
meant to be either SM fields when allowed by gauge invari-
ance or new low energy fields. The symbols A−Ex,m,v stand
for a classification of the operators’ possible astrophysical sig-
nals, and will be explained in Sec. I V .

A s for the dimension 6 operators the number of possibilities
is also remarkably limited. Two general structures are singled
out for the scalar case and three for the fermion and vector
cases, leading to 7 scalar operators

O1YY
φDM

≡ φDMFY µνFµν
Y φ φDM ·φ = (1,0) A (10)

O1Y L
φDM

≡ φDMFLµνFµν
Y φ φDM ·φ = (3,0) B (11)

O1LL
φDM

≡ φDMFLµνFµν
L φ φDM ·φ = (1/3/5,0) Cx,m (12)

O1YY ′
φDM

≡ φDMFY µνFµν
Y ′ φ φDM ·φ = (1,0) Ax (13)

O1LY ′
φDM

≡ φDMFLµνFµν
Y ′ φ φDM ·φ = (3,0) Cx (14)

O2Y
φDM

≡ DµφDMDνφFµν
Y φDM ·φ = (1,0) Ax,m,v (15)

O2L
φDM

≡ DµφDMDνφFµν
L φDM ·φ = (3,0) Cx,m,v (16)

to 6 fermion operators

O1Y
ψDM

≡ ψ̄σµνψDMFµν
Y φ ψ̄ ·ψDM ·φ = (1,0) Ax,m (17)

O1L
ψDM

≡ ψ̄σµνψDMFµν
L φ ψ̄ ·ψDM ·φ = (3,0) Cx,m (18)

O2Y
ψDM

≡ Dµψ̄γνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (19)

O2L
ψDM

≡ Dµψ̄γνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (20)

O3Y
ψDM

≡ ψ̄γµDνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (21)

O3L
ψDM

≡ ψ̄γµDνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (22)

and to 5 vector operators

O1
VDM

≡ FDM
µν Fµρ

Y Fν
Y ′ρ Ax (23)

O2Y
VDM

≡ FDM
µν Fµν

Y φφ′ φ ·φ′ = (1,0) Ax (24)

O2L
VDM

≡ FDM
µν Fµν

L φφ′ φ ·φ′ = (3,0) Dx,m (25)

O3YY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
Y φ ·φ′ = (1,0) Ax,m (26)

O3LY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
L φ ·φ′ = (3,0) Dx,m. (27)

B y DDM
µ we mean a covariant derivative that contains the D M

vector field.2

A long the operator criteria defined above, note that one
must still add to the list three types of operators, whose struc-
tures are somehow more involved.

F irst, a few operators that contain two covariant derivatives
on a same field. There are two structures of this kind for

2 In Ref. [11] an explicit example can be found of an accidental symmetry
setup leading to the operators of Eqs. (24) and (26). Note also that in
Ref. [15] there are examples of heavy scalar and heavy vector setups whose
exchange induces dimension 6 four-fermion interactions that at one loop
induce a ψDM → γν decay. The effective amplitude for this process is the
same as the ones that the dimension 5 operators of Eq. (6) or Eq. (7) give.
This exemplifies the fact, to keep in mind, that dimension 5 operators for a
decay can naturally have a “dimension 6 suppression” of the lifetime.

2

a) First, obviously the operator must contain the DM field.

b) Secondly, in order for the operator to lead to a two-body
decay with a photon, it must not contain too many fields
(except eventually scalars that could be replaced by their
vacuum expectation values (vev)) and it must contain ei-
ther a hypercharge Fµν

Y or a SU(2)L Fµν
L field strength. If

the DM particle is neutral, as we will assume here, the
photon cannot come from a covariant derivative because
in the two body decays all fields are necessarily neutral.
One could eventually have a photon emitted from an op-
erator that contains a new U(1) gauge field that kinemati-
cally mix with the hypercharge gauge boson, L ! εFµν

Y F ′
µν

(rendering the various neutral particles to be effectively
milli-charged). We will not consider this possibility here.
It gives a range of bounds on the emission of γ-ray lines
which is similar to the one obtained below (see Ref. [14]
for details).

c) Thirdly, some operators can be related to other ones
through various relations, equations of motions, shift of a
derivative or use of the fact that the commutator of two co-
variant derivatives Dµ, Dν gives Fµν. However one must be
careful in using these relations. The criteria we apply here
is that through these relations an operator can be dropped
from the list only if in this way there is a one-to-one corre-
spondence between this operator and another one already
in the list. Otherwise both operators must be kept because
in general they give different ratios of γ-line to CRs.

Applying the criteria above there are only three possible
general dimension 5 structures, one for each of the three types
of DM particle we consider here, scalar, fermion or vector:
φDMFµνFµν, ψDMσµνψFµν, FDM

µν Fµνφ respectively. Specify-
ing what is the Fµν field strength one obtains only 9 possible
operators, 5 for a scalar candidate, and 2 for a fermion or vec-
tor candidate

O(5)YY
φDM

≡ φDMFY µνFµν
Y φDM = (1,0) A (1)

O(5)Y L
φDM

≡ φDMFLµνFµν
Y φDM = (3,0) B (2)

O(5)LL
φDM

≡ φDMFLµνFµν
L φDM = (1/3/5,0) Dm (3)

O(5)YY ′

φDM
≡ φDMFY µνFµν

Y ′ φDM = (1,0) Ax (4)

O(5)LY ′

φDM
≡ φDMFLµνFµν

Y ′ φDM = (3,0) Cx (5)

O(5)Y
ψDM ≡ ψ̄σµνψDMFµν

Y ψDM ·ψ = (1,0) Ax (6)

O(5)L
ψDM ≡ ψ̄σµνψDMFµν

L ψDM ·ψ = (3,0) Cx,m (7)

O(5)Y
VDM

≡ FDM
µν Fµν

Y φ φ = (1,0) Ax (8)

O(5)L
VDM

≡ FDM
µν Fµν

L φ φ = (3,0) Ex (9)

where φDM/ψDM denotes the multiplet whose neutral compo-
nent φ0

DM/ψ0
DM is the DM particle. By ”(n,Y )” we specify

what must be the size n of the SU(2)L multiplets and their hy-
percharge Y . F ′µν stands for a new possible low energy gauge
field and the vector DM operator FDM

µν stands for an abelian or

non-abelian DM field strength (in practice it will not be nec-
essary to make this distinction in the following). ψ and φ are
meant to be either SM fields when allowed by gauge invari-
ance or new low energy fields. The symbols A−Ex,m,v stand
for a classification of the operators’ possible astrophysical sig-
nals, and will be explained in Sec. IV.

As for the dimension 6 operators the number of possibilities
is also remarkably limited. Two general structures are singled
out for the scalar case and three for the fermion and vector
cases, leading to 7 scalar operators

O1YY
φDM

≡ φDMFY µνFµν
Y φ φDM ·φ = (1,0) A (10)

O1Y L
φDM

≡ φDMFLµνFµν
Y φ φDM ·φ = (3,0) B (11)

O1LL
φDM

≡ φDMFLµνFµν
L φ φDM ·φ = (1/3/5,0) Cx,m (12)

O1YY ′
φDM

≡ φDMFY µνFµν
Y ′ φ φDM ·φ = (1,0) Ax (13)

O1LY ′
φDM

≡ φDMFLµνFµν
Y ′ φ φDM ·φ = (3,0) Cx (14)

O2Y
φDM

≡ DµφDMDνφFµν
Y φDM ·φ = (1,0) Ax,m,v (15)

O2L
φDM

≡ DµφDMDνφFµν
L φDM ·φ = (3,0) Cx,m,v (16)

to 6 fermion operators

O1Y
ψDM

≡ ψ̄σµνψDMFµν
Y φ ψ̄ ·ψDM ·φ = (1,0) Ax,m (17)

O1L
ψDM

≡ ψ̄σµνψDMFµν
L φ ψ̄ ·ψDM ·φ = (3,0) Cx,m (18)

O2Y
ψDM

≡ Dµψ̄γνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (19)

O2L
ψDM

≡ Dµψ̄γνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (20)

O3Y
ψDM

≡ ψ̄γµDνψDMFµν
Y ψ̄ ·ψDM = (1,0) Ax (21)

O3L
ψDM

≡ ψ̄γµDνψDMFµν
L ψ̄ ·ψDM = (3,0) Cx,m (22)

and to 5 vector operators

O1
VDM

≡ FDM
µν Fµρ

Y Fν
Y ′ρ Ax (23)

O2Y
VDM

≡ FDM
µν Fµν

Y φφ′ φ ·φ′ = (1,0) Ax (24)

O2L
VDM

≡ FDM
µν Fµν

L φφ′ φ ·φ′ = (3,0) Dx,m (25)

O3YY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
Y φ ·φ′ = (1,0) Ax,m (26)

O3LY ′
VDM

≡ DDM
µ φDDM

ν φ′Fµν
L φ ·φ′ = (3,0) Dx,m. (27)

By DDM
µ we mean a covariant derivative that contains the DM

vector field.2
Along the operator criteria defined above, note that one

must still add to the list three types of operators, whose struc-
tures are somehow more involved.

First, a few operators that contain two covariant derivatives
on a same field. There are two structures of this kind for

2 In Ref. [11] an explicit example can be found of an accidental symmetry
setup leading to the operators of Eqs. (24) and (26). Note also that in
Ref. [15] there are examples of heavy scalar and heavy vector setups whose
exchange induces dimension 6 four-fermion interactions that at one loop
induce a ψDM → γν decay. The effective amplitude for this process is the
same as the ones that the dimension 5 operators of Eq. (6) or Eq. (7) give.
This exemplifies the fact, to keep in mind, that dimension 5 operators for a
decay can naturally have a “dimension 6 suppression” of the lifetime.

              a GUT induced dim-6 
             operator gives cosmic 
              ray fluxes of order ex-
            perimental sensitivity! 

τDM > 1026−29 sec

τDM > τUniverse



Upper bounds on  -line intensity from DM decayγ

 direct   -line search 

       upper bounds depen-
ding on operator

γ

                     possibilities of operator discrimination 

                     N.B.: an observable   -line could also be due to the possible fact that the DM particle is not absolutely neutralγ

 DM millicharge

 combined with the 
   fact that op. can give 
  more than one line
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Explicit mediator approach: Z mediator for fermion DM

                    e.g. assuming DM/SM specific mediator :

                    Z mediator :

                    totally excluded for “standard” Z couplings

                    fermion DM: vector and axial DM coupling to the Z 
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F igure 3: DM coupled to the Z. Regions of DM mass MDM and Z couplings (gDM
s , gDM

V , gDM
A ):

the orange region is excluded at 90% CL by ATLAS mono-jet searches at LHC8, with forecast for

LHC14 (dashed blue line); the grey region is excluded at 90% CL by LUX 2013 direct searches;

the blue region is excluded by the Z-invisible width constraint  Z,inv < 2 Me V . The green solid

curve corresponds to a thermal relic abundance via Z-coupling annihilation equal to the observed

DM density (the thick curve is the off-shell estimation; the thin curve is the on-shell computation).

Results

In þg. 3 we compare the L H C sensi t ivity with the current bounds. In the plane (D M mass, D M
coupling to Z) we show:

1. T he bounds from direct detect ion, dominated by the L U X experiments (regions shaded in
grey). T he bounds on gDM

V and gDM
s are quite strong (around 10−3 for D M mass around

100 G e V), while gDM
A , which leads to spin-dependent interact ions, is less constrained (typically

gDM
A

<∼ 0.3 for MDM ≈ 100 G e V ). We see that direct detect ion experiments severely constrain
the vector coupling gDM

V and the scalar coupling gDM
s , and are presently probing the region

gDM
A ∼ 1.

2. T he L E P bounds from the invisible Z width,  Z,inv < 2 Me V . T his bound, shown in light blue,
implies gDM

V,A
<∼ 0.04, gDM

s <∼ 0.08 if MDM < MZ/2.

3. T he present bound from L H C mono-jet searches, extracted with the procedure described in
sect ion 2.3. We see that such bounds can never be compet i t ive with the combined limits from
L U X and L E P.

4. Our est imate on the future sensi t ivity of L H C at
√
s = 14 Te V with an integrated luminosi ty of

300 fb−1 . By simulating the sample and rescaling the corresponding stat ist ical error with the
square-root of the number of events we þnd that only a modest improvement is possible. New
strategies for reducing the systematic error and improving background reject ion are necessary
for the L H C to give compet i t ive results.

5. T he curve that corresponds to a thermal D M densi ty equal to the cosmological densi ty (green
curve). We observe that a thermal abundance from pure Z coupling is ruled out for scalar

12

  For direct detection: the Z can be integrated out         same discussion than with effective operators

For colliders:  the Z must be kept explicit 
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Figure 3: DM coupled to the Z. Regions of DM mass MDM and Z couplings (gDM
s , gDM

V , gDM
A ):

the orange region is excluded at 90% CL by ATLAS mono-jet searches at LHC8, with forecast for

LHC14 (dashed blue line); the grey region is excluded at 90% CL by LUX 2013 direct searches;

the blue region is excluded by the Z-invisible width constraint ΓZ,inv < 2 MeV. The green solid

curve corresponds to a thermal relic abundance via Z-coupling annihilation equal to the observed

DM density (the thick curve is the off-shell estimation; the thin curve is the on-shell computation).

Results

In fig. 3 we compare the LHC sensitivity with the current bounds. In the plane (DM mass, DM

coupling to Z) we show:

1. The bounds from direct detection, dominated by the LUX experiments (regions shaded in

grey). The bounds on gDM
V and gDM

s are quite strong (around 10−3 for DM mass around

100 GeV), while gDM
A , which leads to spin-dependent interactions, is less constrained (typically

gDM
A

<∼ 0.3 for MDM ≈ 100GeV). We see that direct detection experiments severely constrain

the vector coupling gDM
V and the scalar coupling gDM

s , and are presently probing the region

gDM
A ∼ 1.

2. The LEP bounds from the invisible Z width, ΓZ,inv < 2 MeV. This bound, shown in light blue,

implies gDM
V,A

<∼ 0.04, gDM
s <∼ 0.08 if MDM < MZ/2.

3. The present bound from LHC mono-jet searches, extracted with the procedure described in

section 2.3. We see that such bounds can never be competitive with the combined limits from

LUX and LEP.

4. Our estimate on the future sensitivity of LHC at
√
s = 14TeV with an integrated luminosity of

300 fb−1. By simulating the sample and rescaling the corresponding statistical error with the

square-root of the number of events we find that only a modest improvement is possible. New

strategies for reducing the systematic error and improving background rejection are necessary

for the LHC to give competitive results.

5. The curve that corresponds to a thermal DM density equal to the cosmological density (green

curve). We observe that a thermal abundance from pure Z coupling is ruled out for scalar
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                    still largely open for  

gDM
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A
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A γ5 )γ
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Explicit mediator approach: Z mediator for scalar DM
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Figure 3: DM coupled to the Z. Regions of DM mass MDM and Z couplings (gDM
s , gDM

V , gDM
A ):

the orange region is excluded at 90% CL by ATLAS mono-jet searches at LHC8, with forecast for

LHC14 (dashed blue line); the grey region is excluded at 90% CL by LUX 2013 direct searches;

the blue region is excluded by the Z-invisible width constraint ΓZ,inv < 2 MeV. The green solid

curve corresponds to a thermal relic abundance via Z-coupling annihilation equal to the observed

DM density (the thick curve is the off-shell estimation; the thin curve is the on-shell computation).

Results

In fig. 3 we compare the LHC sensitivity with the current bounds. In the plane (DM mass, DM

coupling to Z) we show:

1. The bounds from direct detection, dominated by the LUX experiments (regions shaded in

grey). The bounds on gDM
V and gDM

s are quite strong (around 10−3 for DM mass around

100 GeV), while gDM
A , which leads to spin-dependent interactions, is less constrained (typically

gDM
A

<∼ 0.3 for MDM ≈ 100GeV). We see that direct detection experiments severely constrain

the vector coupling gDM
V and the scalar coupling gDM

s , and are presently probing the region

gDM
A ∼ 1.

2. The LEP bounds from the invisible Z width, ΓZ,inv < 2 MeV. This bound, shown in light blue,

implies gDM
V,A

<∼ 0.04, gDM
s <∼ 0.08 if MDM < MZ/2.

3. The present bound from LHC mono-jet searches, extracted with the procedure described in

section 2.3. We see that such bounds can never be competitive with the combined limits from

LUX and LEP.

4. Our estimate on the future sensitivity of LHC at
√
s = 14TeV with an integrated luminosity of

300 fb−1. By simulating the sample and rescaling the corresponding statistical error with the

square-root of the number of events we find that only a modest improvement is possible. New

strategies for reducing the systematic error and improving background rejection are necessary

for the LHC to give competitive results.

5. The curve that corresponds to a thermal DM density equal to the cosmological density (green

curve). We observe that a thermal abundance from pure Z coupling is ruled out for scalar

12

                    similar to fermion DM vector case

                    totally excluded for “standard” Z couplings
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L ! −Zµ
g

cos θW
gφ [φ

∗
DM∂µφDM − ∂µφ∗

DMφDM ]



                    Fermion DM: lowest gauge invariant interaction: dim-5     

      begin to be pretty much constrained below 

Explicit mediator approach: SM scalar mediator 

 oper. discussion
back to effective

O =
1

Λ
H†H ψ̄DMψDM

                    Scalar DM: Higgs portal interaction: L ! λDMH†H φ∗
DMφDM
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Figure 4: DM coupled to the Higgs. Regions of DM mass MDM and Higgs couplings (λDM, yDM,

yPDM): the orange region is excluded at 90% CL by ATLAS mono-jet searches at LHC8, with forecast

for LHC14 (dashed blue line); the grey region is excluded at 90% CL by LUX 2013 direct searches;

the blue region is excluded by the Higgs invisible width constraint Γh,inv/Γh < 20%. The green solid

curve corresponds to a thermal relic abundance via Higgs-coupling annihilation equal to the observed

DM density (the thick curve is the off-shell estimation; the thin curve is the on-shell computation).

• The pseudo-scalar coupling yPDM only produces the operator ON
11 = i"SDM · "q, which is spin-

dependent and suppressed by the transferred momentum "q:

cn10 ≈ cp10 ≈ 0.26
yPDMmN

M2
h

. (3.12)

As a consequence, there are no limits on perturbative values of yPDM.

Thermal abundance

The relic abundance is computed using the interaction in eq. (3.9), which contributes to DM an-

nihilation through s-channel Higgs exchange and through processes with two Higgs or longitudinal

gauge bosons in the final state. We include these annihilation channels in our computation. In the

case of fermionic DM, the approximation of keeping only the dimension-5 operator in eq. (3.9) is

justified as long as yDM " 0.5 (500GeV/MDM).

Results

In fig. 4 we compare the LHC sensitivity with current bounds, in the plane (DM mass, DM coupling

to h), finding the following results.

1. The bounds from direct detection are dominated by the LUX experiments (regions shaded in

grey). We see that direct detection experiments are severely constraining the scalar couplings

λDM, yDM, while the pseudo-scalar interaction is completely out of reach at the moment.

2. If MDM < Mh/2, the main constraint is due to the Higgs invisible width, Γh,inv/Γh ! 20%,

which gives λDM, yDM, yPDM
<∼ 10−2, taking Γh = 4.2 MeV for Mh = 125.6 GeV.

14

N.B.: Xenon1T will probe it up to               for 
up to               for 

∼ 10TeV

∼ 1TeV

λDM ∼ 1

λDM ∼ 10−1

100GeV

λDM

mDM (GeV)
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BSM mediator : the Z’ example
                    Much less constrained: mass and couplings of mediator unknown

                    - bounds relax if mediator couplings to SM fields are smaller than for Z

                    - bounds relax if mediator mass increases  

>

>>

>

DM

DM

Z ′

                    example: a fermion DM coupling to SM fermion through a Z’ :

                     5 parameters: 

q

q̄
mDM , mZ′ , gDM , gq, ΓZ′ gDM gq
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Vector: 90% CL limits
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 = 0.3, g
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g

F igu re 3. E xclusion limi ts a t 90% C L for t he vector mediator in t he mDM- Mmed plane for various
diÞerent values of t he =E T t hreshold. T he couplings are þxed to gq = 0:3; gDM = 1. T he op t imum
=E T cu t is =E T > 450 G e V , slight ly larger t han t he =E T > 400 G e V cu t used in t he C MS (and
our) analysis. T he 50 G e V increase in t he =E T > 450 G e V exclusion contour is modest so t he
=E T > 400 G e V cu t is a reasonable choice.

3.3 Face ts of d i rec t de t ec t ion

D ark mat ter interact ions wi t h nuclei lead to ei t her spin-independent (SI) or spin-dependent
(SD ) sca t tering in t he non-relat ivist ic limi t (recall t hat in t he galax y v D M ' 10  3 c). T here-
fore, limi ts on t he cross-sect ion to sca t ter oÞ a nucleon are presented separa tely for each
case. In t his paper we primarily use t he limi ts from t he L U X experiment , which current ly
sets t he st rongest published limi t on SI interact ions for m D M & 6 G e V . T wo-phase xenon
detector technology has a proven t rack record t hrough t he Z E P L I N [75 { 77], X E N O N [78 {
80] and L U X [81] programs and is scalable to t he much larger t arget masses required to
probe very small scat tering cross-sect ions. X enon experiments also have t he advant age
t hat t hey are sensi t ive to bot h SI and SD interact ions.

L U X has published t he limi t for SI interact ions bu t not for SD interact ions. We now
describe our procedure for calculat ing bot h limits and assume t ha t in t he fu t ure, bot h
limi ts will be provided direct ly by t he collaborat ion. We model t he diÞerent ial sca t tering
rate per kg-day a t L U X wi t h [82, 83]

d R
dS1

= ¾(m D M )
Z 1

3 ke V
d E R

1X

n = 1

žS1 (S1)žS2 ( E R ) N (S1; n;
p

n ¦ P M T ) P (n; ¹ ( E R ))
d R

d E R
; (3.4)

where žS1 (S1) and žS2 ( E R ) are t he S1 and S2 e Ž ciencies [81], S1 ranges from 2 P E to
30 P E , N (S1; n;

p
n ¦ P M T ) is a Normal dist ribu t ion wi t h mean and variance n and n ¦ 2

P M T
respect ively, where ¦ P M T ³ 0:37 [84], P (n; ¹ ( E R )) is a Poisson dist ribu t ion wi t h mean
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F igu re 12. A comparison between the 90% C L mono-jet limit in our MSD M models (blue lines)
and the E F T framework (green dashed) in the cross-sect ion vs mDM plane used by the direct
detect ion community. T he left and right panels show the limits on the SI and SD cross-sect ions
appropriate for vector and axial-vector mediators respect ively. T he red dot-dashed line shows
the current L U X limit . T he MSD M and E F T limits should agree in the domain where the E F T
framework is valid. For these choices of parameters, the E F T limit underest imates the MSD M
limits for mDM . 300 G e V and overest imates them for mDM & 300 G e V . T he E F T limit gives a
misleading representation of the relat ive sensi t ivity of mono-jet and direct detect ion searches.

misses important physical eÞects: the E F T limit is symmetric in gq and g D M while the
MSD M limit is asymmetric because the mediator width breaks the degeneracy between gq

and g D M . T herefore, the collider possesses sensi t ivity to the underlying coupling structure,
which is not resolved in the E F T approach.

T he þnal panel in this þgure is the top-right panel, which shows the limits for a vector
mediator when m D M = 200 G e V in the M med vs (gq = g D M ) plane. We see that the E F T
limit again overstates the limit at low M med as the E F T framework does not account for
the oÞ-shell mediator product ion. T his panel is also the only case where the E F T limit
asymptotes to the MSD M limit . T his occurs at large couplings and large mediator masses
where  med & M med , as discussed in our previous paper [12].

For completeness, we also show in þgure 12 a comparison of the MSD M and E F T
limits in a format which may be more familiar. Here we map the MSD M limits for the
cases gq = g D M = 1 (solid blue line) and gq = g D M = 0:5 (short dashed blue line) onto
the usual cross-sect ion vs D M mass plane used to present direct detect ion limits. T he
translat ion of the MSD M limits to the cross-sect ion vs D M mass plane is performed by
passing the mono-jet limits from þgure 5 through eqs. (3.8) and (3.10). T he left and right
panels show the SI and SD cross-sect ions appropriate for vector and axial-vector mediators
respect ively. T he red dot-dashed lines show the L U X limits and the long dashed green line
shows the E F T limits.
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F igu re 12. A comparison between the 90% C L mono-jet limit in our MSD M models (blue lines)
and the E F T framework (green dashed) in the cross-sect ion vs mDM plane used by the direct
detect ion community. T he left and right panels show the limits on the SI and SD cross-sect ions
appropriate for vector and axial-vector mediators respect ively. T he red dot-dashed line shows
the current L U X limit . T he MSD M and E F T limits should agree in the domain where the E F T
framework is valid. For these choices of parameters, the E F T limit underest imates the MSD M
limits for mDM . 300 G e V and overest imates them for mDM & 300 G e V . T he E F T limit gives a
misleading representation of the relat ive sensi t ivity of mono-jet and direct detect ion searches.

misses important physical eÞects: the E F T limit is symmetric in gq and g D M while the
MSD M limit is asymmetric because the mediator width breaks the degeneracy between gq

and g D M . T herefore, the collider possesses sensi t ivity to the underlying coupling structure,
which is not resolved in the E F T approach.

T he þnal panel in this þgure is the top-right panel, which shows the limits for a vector
mediator when m D M = 200 G e V in the M med vs (gq = g D M ) plane. We see that the E F T
limit again overstates the limit at low M med as the E F T framework does not account for
the oÞ-shell mediator product ion. T his panel is also the only case where the E F T limit
asymptotes to the MSD M limit . T his occurs at large couplings and large mediator masses
where  med & M med , as discussed in our previous paper [12].

For completeness, we also show in þgure 12 a comparison of the MSD M and E F T
limits in a format which may be more familiar. Here we map the MSD M limits for the
cases gq = g D M = 1 (solid blue line) and gq = g D M = 0:5 (short dashed blue line) onto
the usual cross-sect ion vs D M mass plane used to present direct detect ion limits. T he
translat ion of the MSD M limits to the cross-sect ion vs D M mass plane is performed by
passing the mono-jet limits from þgure 5 through eqs. (3.8) and (3.10). T he left and right
panels show the SI and SD cross-sect ions appropriate for vector and axial-vector mediators
respect ively. T he red dot-dashed lines show the L U X limits and the long dashed green line
shows the E F T limits.
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                    LHC Z’ direct search:                    Direct detection:
put an upper bound
on Z’-DM couplings

put a lower bound 
  on Z’-DM couplings

                           to escape Z’ detection via large
               invisible Z’ decay width
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Figure 6. The same as Fig. (5) for gD = 0.3.
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Figure 7. Constraints from dilepton searches shown in the plane σSI − mχ together with the LUX

exclusion limits. See text for details.

it has a larger coupling to an invisible sector. However this coupling cannot be arbitrarily

large. Imposing g2DV
2
D ! 4π gives a lower bound on the Z ′ mass, which we will refer to as

a unitarity bound in the sequel.

Combining all our preceding results, we give in the figure (8) the parameter space

allowed when combining ATLAS and LUX limits in the plane (mχ, MZ′) and in the case of

the SSM. All the points below the lines are excluded by our analysis. We see that a large
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F igu re 5. T he 90% C L limits from current mono-jet (blue lines) and direct detect ion (red lines)
searches in the mDM vs Mmed plane for the vector (left panel) and axial-vector (right panel) medi-
ators. T he region to the left of the various curves is excluded. T he solid, dashed and dot-dashed
lines are for (gq ; gDM) = (1; 1), (0:3; 1) and (0:5; 0:5) respect ively. W hile the L H C limits are similar
in both panels, the L U X limits are signiþcantly more constraining for vector mediators. Note that
the vector case has log scales for both axes while the axial-vector case has linear scales.

T he behaviour of the collider limits is more complex and can be understood as follows.
F irst , consider the collider limits for þxed values of m D M and at large values of M med . Here
we again expect the cross-sect ion to scale as g2

q g2
D M . However, unlike for direct detect ion,

we must also take into account the eÞect of the mediator width  med as discussed in [12, 13].
In this case the partonic cross-sect ion scales approximately as g2

q g2
D M =( M 4

med  med ) so that

the limit on M med / p gq g D M   1=4
med . A lthough this approximation ignores the P D F s, we

þnd numerically that it gives a good rule of thumb for the scaling at large values of M med .
From eqs. (2.4) to (2.7) we see that at large values of M med the width of the mediator  med

is proportional to 18g2
q + g2

D M . T his implies that the (gq ; g D M ) = (0:3; 1) case is enhanced
with respect to the other cases because  med is smallest for this case. T his enhancement
explains why the (gq ; g D M ) = (0:3; 1) mono-jet limit is closer to the gq = g D M = 1 limit
rather than the gq = g D M = 0:5 limit as in the case of the direct detect ion limits.

Second, consider the collider limits for þxed values of M med . T he limits on m D M are
constrained by the energy of the colliding partons since two D M particles must be produced
in the þnal state. T he phase-space suppression factors that enter the cross-sect ion for
vector and axial-vector mediators are typically of the form

q
Q 2

t r  4m2
D M ( Q 2

t r + 2m2
D M )

and ( Q 2
t r  4m2

D M )3=2 respect ively, where Q t r ' 700 G e V is the s-channel momentum
transfer [18]. I t should be noted that these phase space factors also appear in the width
calculation cf. eqs. (2.4) to (2.7). T he axial-vector mediator is more strongly phase-space
suppressed, which accounts for the greater suppression between the gq = g D M = 1 and
gq = g D M = 0:5 limits at small M med in the axial-vector case compared to the vector case

{ 13 {
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Mediator for   -lines and “gluon-lines”
                      -line emission production proceeds  through photon 

   emission from a charged particle in a loop                    as for well known examples:

R =
ng

nγ

                     is basically known:

                depends on 
                               representation for

SU(3)c

A A

A

                     many experimental consequences!

γ

γ
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if the charged particle emitting the   -line is also colored: “gluon lines”:
                    as for well known examples:

h → γγ, π0 → γγ, ...

γ

h → γγ, π0 → γγ, ...
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∼ 50− 100

γ



“Gluon lines” associated to  -lines 
                     Many experimental consequences!

                     gluon “lines” may lead to observable    flux for          ~ few hundreds GeV

                     gluon “lines” may lead to observable    continuum flux

                     gluon exchange leads to                   cross section: observable for
                                                                                                      
DM -Nucleon

                   gluon “lines” production gives a       annihilation cross section of the 
      right order of magnitude for fitting observed relic density      

DM

 for a   -line observed around 
     current experimental sensitivity

p̄

                     possibility of gluon fusion       pair production at LHCDM

5

These operators lead to the following annihilation cross sec-
tions into gluon pairs:

h sv igg = a 2
Sm2

cS
=(9p3 L 4

S ) (10)

h sv igg = a 2
Sm4

c F =(2p3 L 6
F ) (11)

Imposing a thermal freezeout abundance, Eq. (6), they give
respectively

mcS ³ 130
(

L S

134GeV

)2

GeV ; (12)

mc F ³ 130
(

L F

171GeV

)3=2

GeV ; (13)

were we set a S = a S (130GeV ).

Xenon100

Tevatron Limit LHC Reach

Xenon1T Reach

10 20 50 100 200 500 1000
10!30

10!28

10!26

10!24

10!22

mDM

!Σv"gg

F IG. 6: Bounds from X enon100 (solid) on a scalar candidate (masses
in GeV ) with coupling to gluons through the operator of Eq.(8),
(annihilation cross section in cm3Ðs  1), the Tevatron limits (solid)
from jets + missing energy, and the prospects for X enon1T (dashed,
adapted from [42]) and the L H C (dashed, adapted from [36]). For
sv ¾ 1 pbarn (horizontal line), candidates heavier than ¾ 130 GeV
(vertical line) are allowed by current data.

What are the prospects for direct detection (D D)? The op-
erator (9) is a priori out of reach of direct detection experi-
ments because its scattering cross section is both recoil mo-
mentum suppressed, and Spin-Dependent (SD). The other op-
erator however, Eq.(8), leads to a standard Spin Independent
(SI) elastic cross section on nuclei, and so may be tested by
D D experiments. The procedure to derive the effective cou-
pling of cS to a nucleon is pretty straightforward [38]. The
matrix element of the gluon operator on a nucleon state may
be written as

a S

12p
hN jG a

µn G aµn jN i = fN mN hN j ȳ N y N jN i (  fN mN ); (14)

with an effective coupling fN = 2=27 ³ 0:074. This is pre-
cisely the contribution that would be induced by a heavy quark

loop. In our comparison with experiments, we use a more pre-
cise expression that takes into account the contribution from
the light quarks to the nucleon mass (see for instance [39]),

fN =
2

27
(1  (1 + ry=2) s pN =mN )

where y is the fractional strange-quark content of the nucleon,
r = 2ms=(mu + md ) and s pN is the pion-nucleon sigma term.
There are substantial uncertainties on fN . Our estimate is fN =
0:053 š 0:011 (at 1-s). Regardless, from the above we get

s (N )
SI =

f 2
N

4p
m2

N µ2

L 4
S m2

cS

(15)

where µ is the cS=N reduced mass.
In F ig.6, we use Eqs.(10) and (15) to constrain the annihila-
tion cross section into gluons using the exclusion limits set by
X enon100 [40]. The horizontal band (reddish) corresponds to
the standard freeze-out annihilation cross section ¾ 1 pbarn
(see [41] for a recent re-appraisal of h sv i F O ). The other band
corresponds to the exclusion limits set by X enon100. The
width of the band corresponds to a 2-s variation of the pa-
rameter fN . The vertical line corresponds to mD M = 130 GeV.
A lso, we have allowed, in the relation between the annihila-
tion cross section and the elastic SI scattering cross section,
for the possibility of next-to-leading corrections in a S to the
annihilation cross section, which may amount to a factor ¾< 2,
based on the expression for H iggs decay in gluon-gluon (see
for instance [43]). The (corresponding) corrections to the elas-
tic cross section are more difficult to assess, as the expression
is non-perturbative in nature. To be concrete, we conclude that
the X enon100 data exclude all the candidates below ¾ 130
GeV (except for light, ¾ few GeV, candidates, which we do
not address here): hence a candidate with mDM = 130 GeV
will be tested by the forthcoming X enon100 data. The future
X enon1T experiment may probe candidates up to ¾ 385 GeV.

Case 2. g-line, s channel exchange. The operators of Eqs. (8)
and (9) can be induced by the s-channel exchange of, respec-
tively, a scalar S or a pseudo-scalar P particle (messenger in
the sequel), F ig.1. For instance the following Yukawa and
one-loop effective interactions

L ¦ µSSc†
S cS + yQ

S
mQ

a S

12p
G a

µn G aµn ; (16)

L ¦ iyP P c̄ F g5 c F + yQ
P

mQ

a S

8p
G a

µn G̃ aµn ; (17)

will induce such interactions. In the effective coupling be-
tween the messenger and gluons, we have in mind the effec-
tive coupling of a single heavy vector quark. More generally
speaking, mQ =yQ can be considered as being an effective mass
scale, just like in operators (8,9), which encompasses the con-
tributions of many degrees of freedom running in the loop.
A ccordingly, in the sequel we will often set yQ = 1. The dis-
cussion of the relic abundance and of indirect signals depends
on the mass of the s-channel messenger.

C learly, for a heavy messenger, m2
S;P > > 4m2

DM , the dis-
cussion reduces to the previous case, F ig. 6. One recovers

direct detection and collider upper
bounds on DMDM → gg cross section

mDM

mDM ! 500GeV

                     Whenever DM couples to gluon: many experimental possibilities!

Chu, T.H., Scarna, Tytgat 12

4

!

!
!

!
!

!
!

!

!

!

!

!! !

!

!
!

!
!

!
!

!

!

!

!

"

"
"

"
"

"
"

"

"

"

"

"

"

"
"

"
"

"
"

"

"

"

"

!
!

!

!
! ! ! !

!!
!
!
!!!
!!

!!!

"
"

"

"
" " " "

" "
"
"
"""
""

"""

50 100 500 1000 5000
10!30

10!29

10!28

10!27

10!26

10!25

10!24

DM mass !GeV"

"
Σ

v
$
ΓΓ
!cm3

s
!

1
"

C&5

!

!
!

!
!

!
!

!

!

!

!

!

!

!
!

!
!

!
!

!

!

!

!

!

"

"
"

"
"

"
"

"

"

"

"

"

"

"
"

"
"

"
"

"

"

"

"

"

!
!

!
!

!
! ! ! !

!!
!
!
!!!
!!

!!!

"
"

"
"

"
" " " "

" "
"
"
"""
""

"""

50 100 500 1000 5000
10!30

10!29

10!28

10!27

10!26

10!25

10!24

DM mass !GeV"

"
Σ

v
$
ΓΓ
!cm3

s
!

1
"

C&25

!

!
!

!
!

!
!

!

!

!

!

!

!

!
!

!
!

!
!

!

!

!

!

!

"

"
"

"
"

"
"

"

"

"

"

"

"

"
"

"
"

"
"

"

"

"

"

"

!
!

!

!
! ! ! !

!!
!
!
!!!
!!

!!!

"
"

"

"
" " " "

" "
"
"
"""
""

"""

50 100 500 1000 5000
10!30

10!29

10!28

10!27

10!26

10!25

10!24

DM mass !GeV"

"
Σ

v
$
ΓΓ
!cm3

s
!

1
"

C&100

!
!

!
!

!
!

!

!

!

!

!

! !

!

!
!

!
!

!
!

!

!

!

!

!

"
"

"
"

"
"

"

"

"

"

"

"

"
"

"
"

"
"

"

"

"

"

"

!
!

!
!

!
! ! ! !

!!
!
!
!!!
!!

!!!

"
"

"
"

"
" " " "

" "
"
"
"""
""

"""

50 100 500 1000 5000
10!30

10!29

10!28

10!27

10!26

10!25

10!24

DM mass !GeV"

"
Σ

v
$
ΓΓ
!cm3

s
!

1
"

C&500

Fermi, NFW

Fermi, Einasto

HESS (pr.)

F IG. 5: From the results of F ig. 4, upper bounds on the D M annihilation cross section into monochromatic photons, for C = 5; 25; 100; 500.
The solid (dashed) black line gives the experimental upper bounds from Fermi-L AT assuming a N F W (E inasto) profile [4]. The green line is
an estimate of the possible reach of the H ESS experiment (taken from [32]). The horizontal line corresponds again to the F O annihilation cross
section, rescaled by C .

provide information on the “beyond the SM ” heavy charged
particles at the origin of this line. The discussion of this sec-
tion also applies to narrow “box-shaped” spectrum by simply
rescaling the mass of D M and the ratio C , according to relation
(5).

III. DIRECT DETECTION

A potentially interesting feature of the gluon line scenario is
that it opens the possibility for direct detection through scat-
tering on nuclei. The connection between the gluon cross sec-
tion and possible direct detection is not as model independent
as the anti-protons signature, but depends on the topology and
on the D M particle nature. For some topologies the relation
remains one-to-one, with, as we show, prediction of a signal
of the order the present experimental sensitivity.

Case 1. g-line, quartic interactions. The most straightforward
case is that of an effective quartic coupling between two D M
particles and two gluons, which gives a one-to-one relation
between the gluon cross section and the direct detection rate.
In this case, a single scale, L , controls both the annihilation
cross section and, for the gluon vertex, direct detection and
signatures at hadron colliders, which we will discuss in sec-

tion I V , see Refs.[33–37].
For our argument, the most relevant operators involving two
D M particles and two gluons are

OS =
1

L 2
S

c†
S cS Ð

a S

12p
G aµn G a

µn (8)

OF =
1

L 3
F

i c̄ F g5 c F Ð
a S

8p
G aµn G̃ a

µn (9)

for a scalar (S) and a fermion (F) dark matter candidate respec-
tively (we consider complex scalar and D irac fermion D M —
the generalization to real fields is straightforward). Generally
speaking, one could also consider fermionic operators involv-
ing c̄ F c F , but their annihilation is P-wave suppressed, and so
they are irrelevant (baring a very large boost factor) for in-
direct detection, and a forteriori for a gamma ray lines sig-
nal. Similarly, one could think of operators mixing scalar and
pseudo-scalar quantities, like

1
L 2

S0
c†

S cS Ð
a S

8p
G aµn G̃ a

µn;
1

L 3
F 0

i c̄ F g5 c F Ð
a S

12p
G aµn G a

µn:

These operators are allowed but, as they break CP symme-
try, they are in our opinion somewhat less likely to have large
coefficients, and for conciseness, we simply discard them.
Hence we are left with the two possibilities of Eqs.(8,9).

γ-line intensity upper bound from p̄ flux

γ

γ

γ

mDMmDM

〈σv〉gg

〈σv〉γγTevatron Limit

LHC Reach

Xenon100 Limit

Xenon 1T Reach 

LUX Limit
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Explicit models

      DM models can be classified according to various criteria:

      Minimal models                                 

      Visible sector DM models                              Hidden sector DM models

                      ad hoc DM stability                                    justified DM stability

      which could in a further step be 
            embedded in more general setups

         More theoretically moti-
   vated global models

                      DM/EW scale 
                          similarity just so

τDM > τUniverse

τDM > 1026−29 sec

       The stabilization mechanism 
      determines many structural 

           features of the all DM scenario

                      DM/EW scale 
                              similarity explained



Explicit models: the simplest example: a real scalar singlet

      a real singlet     odd under      parity:S S → −S

m2
S = µ2

S +
1

2
λhsv

2L ! −1

2
µ2
SS

2 − 1

24
λSS

4 − 1

2
λhs H

†HS2

      For       fixed,       can be fixed by                    constraint: everything is fixed!λhsmS ΩDM ! 26%

Dwarf galaxies  -ray flux requires:

LUX direct detection requires: 53GeV ! mDM ! 63GeV Future: Xenon1T will probe            up to 
or 

7TeVmDM

γ
Fermi+CTA will probe           up tomDM 5TeV

except for : 55GeV ! mDM ! 62.5GeV

      shows how a model is getting very squeezed when it depends on only very few parameters 
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FIG. 7: Limits from direct detection on scalar singlet dark matter, shown in the familiar mass-cross-section plane. Areas
excluded by XENON100, future experiments and the relic density are as per fig. 6. The unusual shapes of the curves compared
to traditional direct detection constraint plots is due to our self-consistent treatment of sub-dominant relic densities. Note that
all direct detection signals are scaled for the thermal relic density of the scalar singlet, regardless of whether that density is
greater than or less than the observed density of dark matter. Left : a close-up of the resonant annihilation region, with the
area ruled out by the Higgs invisible width at 2σ CL indicated by the shaded region in the upper left-hand corner. Right : the
full mass range.

within two years. The left panel of Fig. 6 focuses on
the resonant annihilation region mS ∼ mh/2, showing
that a small triangle of parameter space will continue to
be allowed for mS between mh/2 and ∼58GeV. Values
below 53GeV are already robustly excluded, making it
highly unlikely that singlet dark matter can explain var-
ious hints of direct detection that have been seen at low
masses ∼10GeV [95, 96].

On the high-mass side, the right panel of fig. 6 im-
plies that most of the relevant remaining parameter space
will be ruled out in the next few years. In particular,
XENON1T will be able to exclude masses up to 7 TeV,
for which the coupling must be rather large, λhS > 2.4,
leaving little theoretical room for this model if it is not
discovered.

Naively, one might expect the contours of direct detec-
tion sensitivity in the high-mS regions to be exactly ver-
tical in fig. 6 rather than being slightly inclined. This is
because feff ∼ 〈σvrel〉−1 ∼ (mS/λhS)2 in eq. (24), which
is exactly inverse to σSI.7 According to this argument,
the direct detection sensitivity would be independent of
λhS and only scale inversely withmS due to the DM num-
ber density going as 1/mS . However this is not exactly

7 There is some additional dependence upon λhS in the annihila-
tion cross section for SS → hh, but this is very weak at large
mS .

right because the DM relic density has an additional weak
logarithmic dependence on 〈σvrel〉 through the freezeout
temperature, leading to the relation (see eqs. (B7,B8),
with the approximation Af

∼= xfZf )

frel∼(xf Af )
−1∼ ln(cmS〈σvrel〉)

mS〈σvrel〉
∼(mS〈σvrel〉)−1+ε ,

(25)
for some constant c and a small fractional power ε, which
we find to be ε ∼= 0.05. Taylor-expanding the last expres-
sion in ε produces the log in the numerator.

The shape of the exclusion contours in the mS-λhS

plane of course carries over into a similar shape in the
mS-σSI plane, which is the more customary one for direct
detection constraints. We nevertheless replot them in
this form in fig. 7, to emphasize that they look very dif-
ferent from the usual ones, being mostly vertical rather
than horizontal. Normally the DM relic density is as-
sumed to take the standard value because the annihila-
tion cross section 〈σvrel〉 that sets ΩDM is distinct from
that for detection, σSI. Only because they are so closely
related in the present model do we get limits that are
modified by the changing relic density as one scans the
parameter space.

           Higgs invisible 
width 

~ LUX

Cline, Kainulainen, Scott, Weniger 13

mDM > 160GeV

Z2

mDM ! 50GeV



Explicit models: the illustrative Wino example

      e.g. a fermion             triplet DMSU(2)L

      have only gauge interactions with SM fields: 
relic density totally fixed by value of mDM

ΩDM ! 26% mDM ! 3.1TeVrequires

too high for LHC
direct detection: σDM−N ! 10−47 cm2

far future: Darwin?

But Indirect detection remains!! production of    -line is Sommerfeld enhanced
Hisano et al. 03-09
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FIG. 1: The dashed red line shows σ
(
χ0 χ0 → W+W−) v in cm3/s. The solid blue line shows

σ
(
χ0 χ0 → γ γ

)
v + 1

2σ
(
χ0 χ0 → γ Z0

)
v in cm3/s. All three cross sections are computed in the

tree-level-SE approximation. One-loop effects have been shown to reduce the cross section to line
photons by as much as a factor of 4 (see Sec. III B). The exclusion from Fermi (relevant for the
W+W− channel) is the shaded red region, which is bordered by the dashed line. The exclusion
from H.E.S.S. (relevant for the γ γ + 1

2γ Z
0 channel) is the shaded blue region, which is bordered

by the solid line. These exclusion contours assume that the wino abundance is set by thermal
freeze-out. The H.E.S.S. limit is appropriate for an NFW profile, see Sec. III A. The shaded yellow
region between the dotted lines corresponds to Ωh2 = 0.12± 0.006. In the black shaded region, a
thermal wino exceeds the observed relic density.

which the LHC and direct detection experiments are not sensitive. In particular, if the wino

makes up a non-trivial fraction of the DM, it can lead to observable rates for experiments that

search for photons from DM annihilation. Even in this case, the perturbative annihilation

cross section for winos is not always large enough to be observable. However, as the wino

mass becomes large with respect to the W±-boson mass, non-perturbative SE effects due

to the presence of a relatively long-range potential become important, especially at low

velocities. The impact of the SE on wino annihilation has been studied in detail [1–8]

and must be properly accounted for when computing the wino relic density, as well as its

present-day annihilation cross section. Following [1–4], we take the mass dependence for

most cross sections to be proportional to 1/M2
2 . However, we include the appropriate phase-

space and propagator factors for wino annihilations to W+W− and γ Z0 today as they are

numerically relevant at low mass. This implies that our relic density is a slight overestimate

at O(100 GeV) masses. Appendix A reviews the procedure we follow to compute these

non-perturbative effects, and we refer the reader there for an overview of the computation,

HESS upper limit

Predicted flux (x4)

σ(DMDM → γγ)

mDM (TeV)

                we should soon see a signal  
         or exclude this model!

Cohen, Lisanti, Pierce, Slatyer 13
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Explicit models: DM coupled to a colored partner

      many proposals to couple DM directly to a colored partner

Example:       

      ...

      unsuppressed direct detection in s channel

      “Hand-made” to be testable at LHC rather than for any other reason

      scalar colored triplet

ū

χ

χ

u

φu

φ†
u

g

g

u

χ

χ

φ†
u

g

u

u

χ

χ

φu

u

u

g

(a) (b) (c)

Figure 3: The three dark matter particle production mechanisms at hadron colliders. Diagram (a)
has two jets in final state, while (b) and (c) provide mono-jet signatures.

5.1 Estimated limits from monojet on t-change φ exchange

For the fermionic dark matter case and in the heavymφ limit, the Fierz-transformed effective operator

|λu|2

8m2
φ

χγµ (1 + γ5)χuγµ (1− γ5)u (21)

is generated. The existing search at the 8 TeV LHC with around 20 fb−1 constrains the combination of

up quark and down quark operators. For light dark matter masses below analysis cuts on monojet pT

or /ET , the collider production cross section is insensitive to the parity structure of the operators [25].

One can approximately translate the constraints on Λ ∼
√
2mφ/|λu| obtained in Ref. [25] to our model

parameter space. For light dark matter masses, the 90% confidence level (CL) constraints on Λ in

Ref. [25] is around 900 GeV, leading to an estimated constraint of mφ/|λu| ! 640 GeV.

5.2 Limits from 2j + Emiss
T on φ pair production

In the limit of a small dark matter-mediator coupling, λu ≈ 0, the only significant diagram yielding

this final state is (a) in Fig. 3. The production cross-section is identical to that of a single squark in

the MSSM. The present bounds on this process from CMS constrain the colored particle mass to be

above around 500 GeV [67] for a massless neutralino. For λu %= 0, there are additional contributions

from t-channel dark matter exchange and the cross-section for the parton level process u+ ū → φ+φ∗

is given by:

σ = −
1

1728πs3

{

2
√

s(s− 4m2
φ)

[

4g4s (4m
2
φ − s) + 12g2sλ

2
u(s+ 2m2

χ − 2m2
φ) + 27λ4

us
]

+3λ2
u

[

16g2s
(

m2
χs+ (m2

φ −m2
χ)

2
)

+ 9λ2
us(s+ 2m2

χ − 2m2
φ)
]

log





s−
√

s(s− 4m2
φ) + 2m2

χ − 2m2
φ

s+
√

s(s− 4m2
φ) + 2m2

χ − 2m2
φ











.

(22)
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      many ways to pro-
            duce DM at colliders 
            in unsuppressed way

      DM coannihilation with a color partner

      example: bino in thermal equilibrium with a stop or a gluino
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Figure 2: The coloured bands show the region in the MDM–∆M plane where the correct relic abun-

dance is achieved for DM co-annihilating with a scalar/fermion colour-triplet/octet partner. Red:

Sommerfeld corrections neglected. Light green: Sommerfeld corrections included analytically. Dark

green: Sommerfeld corrections and gluon thermal mass included numerically. The LHC 90%CL ex-

clusion is also shown as a vertical grey band. The DM is assumed to be a Majorana fermion. The

case of scalar DM is very similar.

Furthermore, fermion octets also have s-wave annihilations into SM quarks, which for ultra-relativistic

quarks form a (8A, 1) initial state, so that one simply has

σ(F8 + F8 → qq̄)Sommerfeld

σ(F8 + F8 → qq̄)perturbative
= S(−3α3

2β
). (2.25)

2.3 Results for DM co-annihilations with a coloured partner

By approximating the QCD potential as proportional to 1/r (i.e. by renormalising α3 at some fixed

relevant scale in eq. (2.14)), the above equations provide a simple analytical approximation for the

Sommerfeld corrections S. In fig. 2 we show in light green the bands in the (MDM,∆M) plane where

the DM thermal abundance reproduces the observed value within ±3 standard deviations.

8

L ! λu χ̄DM uR φc

De Simone, Giudice, Strumia 14 

Bai, Berger 13
The allowed parameter space for a thermal relic in the complex scalar case has similar features to the

Majorana case, including the co-annihilation effects.

4 Dark matter direct detection

For calculation of dark matter direct detection cross-sections, one could integrate out the dark matter

partner and calculate the scattering cross sections using the effective operators. However, for the

degenerate region, the dark matter partner in the s-channel can dramatically increase the scattering

cross section. To capture the resonance effects, we keep the dark matter partner propagator in our

calculation.

χ

q

φ

χ

q

χ

q

φ

χ

q

(a) (b)

Figure 2: Feynman diagrams for scattering of a fermion dark matter off nucleus. Only the left panel in
(a) contributes to the Dirac fermion case, while both (a) and (b) contribute to the Majorana fermion
case.

For the Dirac dark matter case, only the left panel in Fig. 2 contributes. Both spin-independent

(SI) and spin-dependent (SD) scattering exist. The leading SI interaction cross-section per nucleon is

given by

σNq
SI (Dirac) =

|λu|4 f2
Nq µ

2

64π[(m2
χ −m2

φ)
2 + Γ2

φm
2
φ]

, (18)

where N = p, n; µ is the reduced mass of the dark matter-nucleon system; fNq is the coefficient related

to the quark operator matrix element inside a nucleon. For the up quark operator at hand, one has

fp u = 2 and fnu = 1 [44,50]. The sub-leading SD interaction cross section is given by

σNq
SD (Dirac,Majorana) =

3 |λu|4 ∆2
Nq µ

2

64π[(m2
χ −m2

φ)
2 + Γ2

φm
2
φ]

, (19)

with ∆p
u = ∆n

d = 0.842± 0.012 and ∆p
d = ∆n

u = −0.427± 0.013 [51]. For Majorana dark matter, there

is only an SD scattering cross section with the same formula as the SD scattering of the Dirac fermion

case.
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Explicit models: MSSM neutralino
      Main impact of the LHC on MSSM: colored sector: mg̃ ! 1TeV

mũ,d̃ ! 1TeV

      impact of gluino mass bound 
             on neutralino parameters is mild

             impact of 1st generat. squarks mass bounds 
    on neutralino parameters is also mild

      leaves neutralino option widely open

                  e.g. can suppress various quarks 
exchange diagrams: >

>u, d

u, dχ

χ

ũ, d̃>

                  DM direct detection

      Impact of                               :mh = 125.3± 0.6GeV

has the tendancy to push Higgsino mass above ∼ 500GeV

if  mχ ! 500GeV neutralino easier it is Bino dominated 

widely allowed experimentally
                    a neutralino as light as ~20-30 GeV is still 

                possible (in fully general MSSM) Calibbi et al 12

one stop should be heavy:
                  through RGE’s

if                      neutralino can be easily Higgsino dominatedmχ ! 500GeV

if neutralino is Wino dominated  its mass must be mχ ∼ 3TeV



Explicit models: MSSM neutralino

pMSSM (19 parameters)

Figure 1: Thermal relic density as a function of the LSP mass in our pMSSM model set, as
generated, color-coded by the electroweak properties of the LSP as discussed in the text.

4

range. SD experiments such as COUPP500 (LZ) will only be able to exclude only ∼ 2(4)%
of the models in this set if no signal is seen.

Figure 3: Scaled spin-independent (left) and spin-dependent (right) direct detection cross
sections for our neutralino LSPs in comparison to current and future experimental sensitivi-
ties. The scaling factor accounts for the possibility that the calculated thermal relic density
of the LSP is below that measured by WMAP.

2.3 Indirect Detection: Fermi LAT, CTA and IceCube

Indirect detection can play a critical role in searches for DM and, in the case of null results,
can also lead to very strong constraints on the pMSSM parameter space. As is well-known [1],
searches for excess photons by both Fermi(from, e.g., dwarf galaxies) and CTA (from, e.g.,
the galactic core) can contribute coverage in different regions of the pMSSM parameter space
in the future. CTA, in particular, is found to be extremely powerful in the search for heavy
LSPs which are mostly Higgsino- or wino-like and that predict thermal relic densities within
an order of magnitude or so of the WMAP/Planck value; these constitute ∼ 20% of the
present pMSSM model set. This role is of particular importance since these heavy LSPs are
currently outside the range of the 7 and 8 TeV LHC SUSY searches and might be difficult to
directly access even at 14 TeV. Fermi, on the other hand, is found to be mostly sensitive to
the set of well-tempered neutralinos that are relatively light. In the results presented below,
the relevant analyses were performed by the Fermiand CTA collaborations themselves [1]
and required both the calculation of the photon fluxes for each of the pMSSM model points
under consideration as well as the corresponding modeling of the detector response in order to
compare to their expected DM search sensitivities. A complete discussion of the procedures
followed in this analysis and the corresponding details of these results can be found in Ref. [1].

In addition to these searches, IceCube/DeepCore can also make an important contribu-
tion to the pMSSM parameter space coverage. Neutralino dark matter can be captured,
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                    relic density point out a neutralino below 
                                 ~3 TeV (i.e. gauge driven, or loop driven, ...) 

but could be higher

                   still not much probed by direct detection
                                  but Xenon1T, LZ, ..., will probe it substantially

Rizzo 14, ....
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pMSSM (19 parameters)
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                   still not much probed by direct detection
                                  but Xenon1T, LZ, ..., will probe it substantially

Rizzo 14, ....

masses above ∼ 250 GeV that saturate the relic density. However, for larger masses the
CTA coverage extends down to relic densities as much as a factor of ∼ 10 or more below
the WMAP/Planck value. Fermi is seen to cover only the low LSP mass region with relic
densities not far from the thermal value, while IceCube can go to much lower relic densities
provided the LSP mass is below ∼ 500 GeV or so. LZ has sensitivity throughout this plane
but does best for LSP masses below ∼ 300 GeV, even for models with very low relic densities.
Of course, even for LSP masses up to 1-2 TeV, the LZ sensitivity remains reasonably good.
As noted already, the LHC is presently seen to be effective mainly at lower LSP masses
below ∼ 500 − 600 GeV. The LHC coverage is relatively uniform with respect to the relic
density, but of course the fraction of models excluded is very high in the case of very light
LSPs. Extending the LHC energy to 14 TeV will substantially improve its ability to find
heavy LSPs, as we will see below.

Figure 7: Thermal relic density as a function of the LSP mass for all pMSSM models,
surviving after all searches, color-coded by the electroweak properties of the LSP. Compare
with Fig. 1.
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                    e.g. bino with coannihilation or resonance 
              can still saturate the observed 

      example of multichannel model with good experimental perspective (but no guarantee)

ΩDM



Explicit models: Hidden sector models

      DM could be part of an all hidden sector

VISIBLE SECTOR HIDDEN SECTOR

connectorwith its own 
  gauge groups

 including DM stabi-
lization mechanism 

  and DM annihilationwith its own 
  gauge groups

     Testability depends on connector size:                           no more LHC, Direct/Indirect Detect., 
                         as soon as the connector coupling is 

sizably below unity

                          only gravitational probes remain:
                             - extra radiation constraint

                                     - DM self-interaction constraints 
                                                (halo formation, bullet cluster,...)

    - BBN, ...
Ackerman, Buckley, Carroll, Kamionkowski, 09
Feng, Tu, Yu 08 

Mc Dermott, Yu, Zurek 10

“Secluded DM”    Pospelov, Ritz, Voloshin 07

Feng, Kaplinghat, Tu, Yu 09 

Berezhiani, Comelli, Villante 01

Berezhiani, Lepidi 09
, .......

.......

.......



Explicit models: Hidden sector models with light connector

      Simple example:

a DM fermion charged under an unbroken U(1) which kinetically mixes with the photon

huge enhancement

>

>>

>

N N

+
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→ 1

E2
r

dσ

dEr
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1

E2
r

1

v2
2πκ2Z2α2

mA
F 2
A(qrA)

Er ∼ few KeV

      direct detection sensitive to 
     very small connector values
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Visible sector/Hidden sector/Connector structure:
                       4 basic ways to get the observed relic density

A DM fermion charged under a U(1) which kinetically mixes with the photon:

connector interaction:

II III
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A simple Hidden Sector DM model example:
Hidden vector DM

      assume a non-abelian            gauge structure fully spontaneously brokenSU(2)X

      by a               scalar doubletSU(2)X

L = −1
4
FµνaF a

µν + (Dµφ)†(Dµφ)− µ2
φφ†φ− λφ(φ†φ)2 −λmφ†φH†H

φ

      “Hidden sector”       Hidden sector/SM connector

      4 parameters: gX , µ2
φ, λφ, λm

      after            sym. breaking:   3 massive             gauge bosonsSU(2)X

〈φ〉 =
(

0
vφ√
2

)
SU(2)X

one real scalar boson

a remnant            custodial symmetrySU(2)C

: stable:       candidatesDM

perfectly possible DM candidates in perturbative or confined phases 

TH 07

TH 07
TH, Tytgat 09

DM = hidden forces!
see also H. Davoudiasl, Lewis ’13

TH, Strumia 12



Hidden vector DM

         gauge bosons: perfectly viable DM candidates:SU(2)X

         relic density:
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Figure 3: Annilation processes with a DM particle in the final state.

case in left-right and SO(10) models, both ordinary and supersymmetric). Calculating
the asymmetry from Fig. 2 we obtain:

ε∆ = 2 · Γ(∆∗
L → l + l) − Γ(∆L → l̄ + l̄)

Γ(∆∗
L → l + l) + Γ(∆L → l̄ + l̄)

(8)

=
1
8π

∑

k

MNk

∑
il Im[(Y ∗

N )ki(Y ∗
N )kl(Y∆)ilµ∗]∑

ij |(Y∆)ij |2M2
∆ + |µ|2

log(1 + M2
∆/M2

Nk
) , (9)

while the triplet decay width to two leptons and two scalar doublets is given by:

Γ∆ =
1
8π

M∆

(∑

ij

|(Y∆)ij |2 +
|µ|2

M2
∆

)
. (10)

Note that there is such an asymmetry for each of the three components of the triplet. In
the case where the lighter right-handed neutrino and the triplet have approximately the
same mass and same order of magnitude couplings, all 3 types of asymmetries of Eqs. (5),
(6) and (9) can play an important role. In the following we will discuss the limiting cases
where one process dominates over the others. We will distinguish four such cases.

2.1 Case 1: MN1 << M∆ with a dominant contribution of the right-handed
neutrinos to the light neutrino masses

In the limit where the triplet couplings to two leptons are negligible with respect to
the leading right-handed neutrino Yukawa couplings, and with at least one right-handed
neutrino much lighter than the triplet, the triplet has a negligible effect for both the
neutrino masses and the leptogenesis. This is equivalent to the ordinary right-handed
neutrino scenario without the triplet. Only the 2 diagrams of Fig. 1.a and Fig. 1.b have
a non-negligible effect for leptogenesis. This case has been extensively studied in the
literature (see e.g. [1], [13]-[28]) and we have nothing to add here to it.
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Figure 4: One-loop diagram contributing to the asymmetry from the ∆L decay.
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Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.
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Figure 2: Annilation processes with no DM particle in the final state.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk =
1
8π

∑

j

Im[(YNY †
N )2kj]∑

i |(YN )ki|2
√

xj

[
1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)

]
, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain

ε∆
Nk

= − 1
2π

∑
j Im[(YN )ki(YN )kl(Y ∗

∆)ilµ]
∑

i |(YN )ki|2MNk

(
1 − M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)
. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk =
1
8π

MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the

3

Nk
H

ll

Nj

H∗

li

(a)

Nk

H

ll

Nj

H∗

li

(b)

Nk
ll

H

∆L

H∗

li

(c)

Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.

Ai

Ai

η, h

η, h

Ai

Ai

η, h

η, h

η, h

Ai η, h

Ai

Ai η, h

Ai

Ai

η, h

W,Z

W,Z

Ai

Ai

η, h

f

f̄

Figure 2: Annilation processes with no DM particle in the final state.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk =
1
8π

∑

j

Im[(YNY †
N )2kj]∑

i |(YN )ki|2
√

xj

[
1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)

]
, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain

ε∆
Nk

= − 1
2π

∑
j Im[(YN )ki(YN )kl(Y ∗

∆)ilµ]
∑

i |(YN )ki|2MNk

(
1 − M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)
. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk =
1
8π

MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the

3

Nk
H

ll

Nj

H∗

li

(a)

Nk

H

ll

Nj

H∗

li

(b)

Nk
ll

H

∆L

H∗

li

(c)

Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.

Ai

Ai

η, h

η, h

Ai

Ai

η, h

η, h

η, h

Ai η, h

Ai

Ai η, h

Ai

Ai

η, h

W,Z

W,Z

Ai

Ai

η, h

f

f̄

Figure 2: Annilation processes with no DM particle in the final state.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk =
1
8π

∑

j

Im[(YNY †
N )2kj]∑

i |(YN )ki|2
√

xj

[
1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)

]
, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain

ε∆
Nk

= − 1
2π

∑
j Im[(YN )ki(YN )kl(Y ∗

∆)ilµ]
∑

i |(YN )ki|2MNk

(
1 − M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)
. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk =
1
8π

MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the

3

η

η

η

η

η

η

η

Vi Vi

Vi

Vi Vi

Vi

Nk
H

ll

Nj

H∗

li

(a)

Nk

H

ll

Nj

H∗

li

(b)

Nk
ll

H

∆L

H∗

li

(c)

Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.

Ai

Ai

η, h

η, h

Ai

Ai

η, h

η, h

η, h

Ai η, h

Ai

Ai η, h

Ai

Ai

η, h

W,Z

W,Z

Ai

Ai

η, h

f

f̄

Figure 2: Annilation processes with no DM particle in the final state.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk =
1
8π

∑

j

Im[(YNY †
N )2kj]∑

i |(YN )ki|2
√

xj

[
1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)

]
, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain

ε∆
Nk

= − 1
2π

∑
j Im[(YN )ki(YN )kl(Y ∗

∆)ilµ]
∑

i |(YN )ki|2MNk

(
1 − M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)
. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk =
1
8π

MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the

3

Nk
H

ll

Nj

H∗

li

(a)

Nk

H

ll

Nj

H∗

li

(b)

Nk
ll

H

∆L

H∗

li

(c)

Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.

Ai

Ai

η, h

η, h

Ai

Ai

η, h

η, h

η, h

Ai η, h

Ai

Ai η, h

Ai

Ai

η, h

W,Z

W,Z

Ai

Ai

η, h

f

f̄

Figure 2: Annilation processes with no DM particle in the final state.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk =
1
8π

∑

j

Im[(YNY †
N )2kj]∑

i |(YN )ki|2
√

xj

[
1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)

]
, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain

ε∆
Nk

= − 1
2π

∑
j Im[(YN )ki(YN )kl(Y ∗

∆)ilµ]
∑

i |(YN )ki|2MNk

(
1 − M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)
. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk =
1
8π

MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the

3

Nk
H

ll

Nj

H∗

li

(a)

Nk

H

ll

Nj

H∗

li

(b)

Nk
ll

H

∆L

H∗

li

(c)

Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.

Ai

Ai

η, h

η, h

Ai

Ai

η, h

η, h

η, h

Ai η, h

Ai

Ai η, h

Ai

Ai

η, h

W,Z

W,Z

Ai

Ai

η, h

f

f̄

Figure 2: Annilation processes with no DM particle in the final state.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk =
1
8π

∑

j

Im[(YNY †
N )2kj]∑

i |(YN )ki|2
√

xj

[
1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)

]
, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain

ε∆
Nk

= − 1
2π

∑
j Im[(YN )ki(YN )kl(Y ∗

∆)ilµ]
∑

i |(YN )ki|2MNk

(
1 − M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)
. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk =
1
8π

MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the

3

η η

η

Nk
H

ll

Nj

H∗

li

(a)

Nk

H

ll

Nj

H∗

li

(b)

Nk
ll

H

∆L

H∗

li

(c)

Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.

Ai

Ai

η, h

η, h

Ai

Ai

η, h

η, h

η, h

Ai η, h

Ai

Ai η, h

Ai

Ai

η, h

W,Z

W,Z

Ai

Ai

η, h

f

f̄

Figure 2: Annilation processes with no DM particle in the final state.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk =
1
8π

∑

j

Im[(YNY †
N )2kj]∑

i |(YN )ki|2
√

xj

[
1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)

]
, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain

ε∆
Nk

= − 1
2π

∑
j Im[(YN )ki(YN )kl(Y ∗

∆)ilµ]
∑

i |(YN )ki|2MNk

(
1 − M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)
. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk =
1
8π

MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the

3

Nk
H

ll

Nj

H∗

li

(a)

Nk

H

ll

Nj

H∗

li

(b)

Nk
ll

H

∆L

H∗

li

(c)

Figure 1: One-loop diagrams contributing to the asymmetry from the Nk decay.

Ai

Ai

η, h

η, h

Ai

Ai

η, h

η, h

η, h

Ai η, h

Ai

Ai η, h

Ai

Ai

η, h

W,Z

W,Z

Ai

Ai

η, h

f

f̄

Figure 2: Annilation processes with no DM particle in the final state.

This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give

εNk =
1
8π

∑

j

Im[(YNY †
N )2kj]∑

i |(YN )ki|2
√

xj

[
1 − (1 + xj) log(1 + 1/xj) + 1/(1 − xj)

]
, (5)

where xj = M2
Nj

/M2
Nk

. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain

ε∆
Nk

= − 1
2π

∑
j Im[(YN )ki(YN )kl(Y ∗

∆)ilµ]
∑

i |(YN )ki|2MNk

(
1 − M2

∆

M2
Nk

log(1 + M2
Nk

/M2
∆)

)
. (6)

Note that the tree level decay width is not affected by the existence of the triplet:

ΓNk =
1
8π

MNk

∑

i

|(YN )ki|2 . (7)

From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the

3

h, η

Vi

Vi

Vi

Vi

Vi Vi

ViVi

Vi

Vi

Vi

h, η

h, η

h, η h, η

h, η

Vi

h, η

         direct detection: scalar exchange:         indirect detection:   -lines, ...

         semi-annihilation

γ

Benchmark Zη γη Zh γh

1 0.19 0.81 0 0

2 0.22 0.78 0 0

3 0.23 0.77 0 0

4 0.028 0.79 0.041 0.14

Table 3: Branching Ratios for Case C, including benchmark point 4 which features decay

channels with h in the final state.
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Figure 3: Like Fig. 1, but for case C, benchmark 3, with τDM = 6.0 × 1026 s (Λ =

2.0× 1017 GeV).

positron fraction shows a steep rise which could partially, although not totally, contribute

to the PAMELA positron excess. Moreover, the decay into charged leptons is necessarily

accompanied by a decay into quarks, which produce a sizable antiproton flux and is in

some tension with the observations. This is a generic feature of the decay mode and hence

it is unlikely that it contributes the dominant part to the observed positron excess.

In more generality we found that the PAMELA and Fermi results can be reproduced

in principle by the model, but only at the price of producing a too large diffuse γ signal,

too many antiprotons (unless the dark matter is very heavy) and sometimes gamma lines

above the rates allowed by the H.E.S.S. measurements in the multi TeV range.

16

Figure 8: Obtained spin independent cross-section on nucleon σSI(An → An) versus MA,

in agreement with the constraint 0.091 < Ωh2 < 0.129. Small λm regime (10−7 < λm <

10−3) on the left and large Higgs coupling portal, λm > 10−3 on the right. The color

caption is as in Figs. 6 and 7. The thick (dashed) black curve is the CDMS (Xenon10)

upper bounds at 90% C.L.. The dotted-dashed curve is the recent published CDMS-II

upper bound, at 90% C.L.

regime, λm ! 10−3, direct detection rates of order the present experimental sensitivity

or exceeding it are easily produced. For illustration, among the sets of parameters that

lead to the right relic density in Fig. 7, we have denoted by black dots the ones which

lead to an elastic cross-section on nucleon at most one order of magnitude below the

CDMS [69] and Xenon [70] limits. Here too a dark matter mass in the whole range from

1 GeV up to few TeV can be accommodated. Even though other values are possible, the

η mass tends to be either small, below 100 GeV, or slightly larger than the dark matter

mass. For MA larger than ∼ 700 GeV one recovers the linear relation between vφ and gφ
and the corresponding quadratic behavior of MA in gφ, indicating that the pure hidden

sector annihilations driven by the gφ coupling are dominant, as in the small Higgs portal

regime.

Note that all the dots shown in the figures above satisfy the LEP constraints. The

mixing of the η boson with the standard model Higgs affects the electroweak precision

observables. The main constraint on the model parameters comes from the T parameter,

since the η is a neutral scalar which mixes with the Higgs boson. We use the same cuts

as in Ref. [1], that is to require that T − TSM is in the conservative range −0.27∓ 0.05

from [72]. For Mη < 114.4 GeV the branching ratio η → ff̄ should not exceed the LEP
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SummaryBrief conclusion

                                                              Establishing DM as a WIMP particle: 

                                                                potentially related to many other BSM fundamental issues, at various possible levels

                                                                complementary phenomenological ways to test it from multichannel experiments

  very promising experimentally for visible sector WIMP DM scenarios

                                                                clear possibilities for hidden sector DM models too (but easy to escape detection too)

                                                                effective operators, 
                                                 explicit mediators, 

                                             explicit models

                                                                direct detection,
                                                     indirect detection,

                                       colliders







Is DM at TeV scale useful for anything else than DM??

         relevant question whether or not: -one brings a solution for the hierarchy problem

-one brings an explanation for mDM ∼ TeV ∼ vEW

DM at TeV scale could easily play a role for EW baryogenesis,

or even making it successful

DM at TeV scale could constitute the unique ingredient 
missing for EW unification at GUT scale

for example            setup with automatically stable fermion tripletSO(10) DM

“split SUSY without SUSY”

DM at TeV scale could easily play a role for EWSB dynamics

               Frigerio, T.H. 10



DM particle stability issue
         unlike various non WIMP 

              models (e.g. at lower scale)

         many models: an ad-hoc      sym.

A WIMP do decay unless a symmetry forbids it

Z2

more attractive reason??

based on a gauge symmetry:       remnant subgroup of broken GUT groupZ2

as R-parity in SUSY-GUT

as           in non-susy SO(10)ZB−L
2

based on a flavor symmetry

hidden sector DM: various simple possibilities: -DM stable as electron
-DM stable as lightest neutrino
-DM stable as proton

abelian or non-abelian accidental sym.

The stabilization mechanism determines many structural features of the all DM scenario

Mohapatra 86     

Martin 92    

Hirsch, Morisi, Peinado, Valle 10.

Aulakh, Melfo, 
        Rasin, Senjanovic 98  

T.H 07, T.H., Tytgat 09, Arina, T.H., Ibarra, Weniger 10 

                  Kadastik, Kannike, Raidal 10
Frigerio, T.H. 10

Lavoura, Morisi, Valle 12
Kajiyama, Kannike, Raidal 11

Lopez-Honorez, Merlo 13, Kile 13

based on having DM as a large electroweak multiplet: accidental symmetry
Cirelli, Fornengo, Strumia 06



DM-EW scale issue

      1) A gauge coupling: could be reasonably expected of O(1)                   must be 
around 
mDM

TeV-fewTeV

                   relic density constraint
                   gauge annihilations

Ai

Aj

Ak

Ak

η, h

Ai Ak

Aj

Aj η, h

Figure 3: Annilation processes with a DM particle in the final state.

case in left-right and SO(10) models, both ordinary and supersymmetric). Calculating
the asymmetry from Fig. 2 we obtain:

ε∆ = 2 · Γ(∆∗
L → l + l) − Γ(∆L → l̄ + l̄)

Γ(∆∗
L → l + l) + Γ(∆L → l̄ + l̄)

(8)

=
1
8π

∑

k

MNk

∑
il Im[(Y ∗

N )ki(Y ∗
N )kl(Y∆)ilµ∗]∑

ij |(Y∆)ij |2M2
∆ + |µ|2

log(1 + M2
∆/M2

Nk
) , (9)

while the triplet decay width to two leptons and two scalar doublets is given by:

Γ∆ =
1
8π

M∆

(∑

ij

|(Y∆)ij |2 +
|µ|2

M2
∆

)
. (10)

Note that there is such an asymmetry for each of the three components of the triplet. In
the case where the lighter right-handed neutrino and the triplet have approximately the
same mass and same order of magnitude couplings, all 3 types of asymmetries of Eqs. (5),
(6) and (9) can play an important role. In the following we will discuss the limiting cases
where one process dominates over the others. We will distinguish four such cases.

2.1 Case 1: MN1 << M∆ with a dominant contribution of the right-handed
neutrinos to the light neutrino masses

In the limit where the triplet couplings to two leptons are negligible with respect to
the leading right-handed neutrino Yukawa couplings, and with at least one right-handed
neutrino much lighter than the triplet, the triplet has a negligible effect for both the
neutrino masses and the leptogenesis. This is equivalent to the ordinary right-handed
neutrino scenario without the triplet. Only the 2 diagrams of Fig. 1.a and Fig. 1.b have
a non-negligible effect for leptogenesis. This case has been extensively studied in the
literature (see e.g. [1], [13]-[28]) and we have nothing to add here to it.
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This asymmetry is given by the interference of the ordinary tree level decay with the 3
diagrams of Fig. 1. The first two diagrams are the ordinary vertex and self-energy diagrams
involving another (virtual) right-handed neutrino and give
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. The third diagram of Fig. 1 which was already displayed without
calculations in Ref. [10] involves a virtual triplet and is a new contribution. Calculating
it we obtain
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Note that the tree level decay width is not affected by the existence of the triplet:
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From the decay of the triplet to two leptons an asymmetry can also be produced. It is
given by the interference of the tree level process with the one-loop vertex diagram, given
in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with one triplet alone
there is no self-energy diagram, and therefore without at least one right-handed neutrino
no asymmetry can be produced. At least two triplets are necessary in order to produce
an asymmetry without right-handed neutrinos, in which case the asymmetry comes from
self-energy diagrams as was shown in Refs. [11, 12]. Here we will restrict ourselves to
the case where there is only one SU(2)L triplet coupled to leptons (as it is in general the
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DM-EW scale issue

      2) If hidden vector at TeV scale        it has easily an effect on EWSB

connector:

                                              a value                               gives a 
                                     contribution to        of order            

for 

〈φ〉 ∼ mDM ∼ TeV
mh mexp

h
λm ∼ 10−2,−3

vEW ∼ mDM
1

gφ

√
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2λH

! −1

2
λmv2φ H

†H

L ! −λmφ†φH†H

      a moderate connector gives a large effect on EWSB:

                                             no surprise: an illustration of 
                                            hierarchy problem, but here

                                                induced by the well motivated 
                  DM scale                                            

µ2
H < µ2

H−SM →      if



Classically scale invariant case

      3) Starting from                              no tree level HS gauge group sym. breaking, 
                          no tree level EWSB

      Coleman Weinberg radiative (i.e. dynamical) sym. breaking of HS gauge group

µ2
H = µ2

φ = 0

SU(2)X                                  DM gauge bosons loop induce a non trivial 
minimum for     effective potentialφ

      induces EWSB through                                L ! −λmφ†φH†H

vEW = vφ

√
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2λH

T.H., Strumia ’13



Visible sector Col.-W. vs Hidden sector Col.-W.

      Visible sector: if DM is neutral component of scalar SM doublet     :

      if                         :       loops destabilize the     potential         EWSB

                                  but requires large quartic scalar coupling
       in order to compen-

            sate the large negative 
           top loop contribution

H2

”inert scalar doublet”

H2 Hµ2
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H2
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†
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                                  Landau pole(s) far below mPlanck

      Hidden sector: no need for large scalar couplings: no Landau poles

     can be assumed at µ = mPlanck

       sym. breaking when                  at SU(2)X µ << mPlanck

vEW ∼ mDM << mPlanck

µ2
H = µ2

φ = 0
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Phenomenology of scale invariant hidden vector setup
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Figure 1: Predicted cross sections for the extra scalar boson (left) and for DM direct detection
(right) as function of the only free parameter of the model λHS, varied as shown in the colour
legend.

The extra state h2 behaves as an extra Higgs boson with couplings rescaled by sinα. This
means that it is a narrow resonance even if heavier than 1 TeV. For m2 < 2m1 the extra scalar
behaves as a Higgs-like state with production cross section suppressed by sin2 α, while for
m2 > 2m1 the extra state also has a decay width into two Higgs,

Γ(h2 → h1h1) =
λ2
HS

32π

w2

m2
2

√
m2

2 − 4m2
1, (15)

which contributes to up 20% to its total width, dominated by h2 → WW,ZZ, tt̄. The shaded
regions in fig. 1a are excluded by LEP (at small mass) and LHC (at large mass, h → WW

searches are plotted as dashed curves and h → ZZ searches as dot-dashed curves). Future
sensitivities are discussed in [20]. Present experimental searches for h → ZZ and for h → γγ

show some (non statistically significant) hint for an extra state at m2 ≈ 143GeV [1].
The cross section for DM production at LHC (mediated by off-shell h1 or h2) can easily be

negligibly small.

Direct Dark Matter signals

The Spin-Independent cross section for DM direct detection is [7]

σSI =
m4

Nf
2

16πv2

(
1

m2
1

− 1

m2
2

)2

g2X sin2 2α (16)

where f ≈ 0.295 is the nucleon matrix element and mN is the nucleon mass. Fig. 1b shows
the predictions for DM direct searches. Present direct detection constraints imply the bounds
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Figure 2: Running of the model parameters up to the Planck scale for gX = 1.

proximity of the QCD scale to the electroweak scale as due to a proximity between the strong
gauge coupling g3 and the dark gauge coupling gX . Indeed, g3 and gX happen to have not
only similar values at the weak scale, but also a numerically similar β function, such that all
gauge coupling roughly reach a common value at large energies. At low energy gX becomes
large, of order one, triggering a negative λS and consequently dynamically generating the
DM scale and the weak scale.

Dark/electroweak phase transition

The mechanism of dynamical scale generation implies a negative value of the cosmological
constant (barring meta-stable minima). The contribution of the present model is Vmin !
−w4βλS/16. Despite being suppressed by a one-loop factor, this contribution is larger by about
60 orders of magnitude than the observed value. Assuming that the cosmological constant
problem is solved by a fine-tuning, we can proceed to study how the dark and electroweak
phase transitions occur during the big-bang.

We recall that the SM predicts a second-order phase transition where the Higgs boson
starts to obtain a vacuum expectation value v(T ) at temperatures below T SM

c ≈ 170GeV and
sphalerons decouple when T SM

dec ≈ v(T SM
dec ) ≈ 140GeV [22].

Within the present model, using again the small λHS approximation, the one-loop thermal
correction to the potential is

VT (s, h ≈ 0) =
9T 4

2π2
f(

MX

T
) +

T

4π
[M3

X − (M2
X + ΠX)

3/2] (19)
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