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Outline
• Machine Learning refresher 

• scikit-learn 

• How the project is structured 

• Some improvements released in 0.15 

• Ongoing work for 0.16



Predictive modeling 
~= machine learning

• Make predictions of outcome on new data 

• Extract the structure of historical data 

• Statistical tools to summarize the training data into 
a executable predictive model 

• Alternative to hard-coded rules written by experts
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Applications in Business
• Forecast sales, customer churn, traffic, prices 

• Predict CTR and optimal bid price for online ads 

• Build computer vision systems for robots in the 
industry and agriculture 

• Detect network anomalies, fraud and spams 

• Recommend products, movies, music



Applications in Science
• Decode the activity of the brain recorded via fMRI / 

EEG / MEG 

• Decode gene expression data to model regulatory 
networks 

• Predict the distance of each star in the sky 

• Identify the Higgs boson in proton-proton collisions



• Library of Machine Learning algorithms 

• Focus on established methods (e.g. ESL-II) 

• Open Source (BSD) 

• Simple fit / predict / transform API 

• Python / NumPy / SciPy / Cython 

• Model Assessment, Selection & Ensembles



Support Vector Machine

from sklearn.svm import SVC!
!
model = SVC(kernel=“rbf”, C=1.0, gamma=1e-4)!
model.fit(X_train, y_train)!
!
!
y_predicted = model.predict(X_test)!
!
from sklearn.metrics import f1_score!
f1_score(y_test, y_predicted)



Linear Classifier

from sklearn.linear_model import SGDClassifier!
!
model = SGDClassifier(alpha=1e-4, penalty=“elasticnet")!
model.fit(X_train, y_train)!
!
!
y_predicted = model.predict(X_test)!
!
from sklearn.metrics import f1_score!
f1_score(y_test, y_predicted)



Random Forests

from sklearn.ensemble import RandomForestClassifier!
!
model = RandomForestClassifier(n_estimators=200)!
model.fit(X_train, y_train)!
!
!
y_predicted = model.predict(X_test)!
!
from sklearn.metrics import f1_score!
f1_score(y_test, y_predicted)











scikit-learn contributors
• GitHub-centric contribution workflow 

• each pull request needs 2 x [+1] reviews 

• code + tests + doc + example 

• ~94% test coverage / Continuous Integration 

• 2-3 major releases per years + bug-fix 

• 150+ contributors for release 0.15











scikit-learn 
International Sprint 

 Paris - 2014



scikit-learn users
• We support users on                              & ML 

• 1500+ questions tagged with [scikit-learn] 

• Many                      competitors + benchmarks 

• Many data-driven startups use sklearn 

• 500+ answers on 0.13 release user survey 

• 60% academics / 40% from industry





New in 0.15



Fit time improvements in 
Ensembles of Trees

• Large refactoring of the Cython code base 

• Better internal data structures to optimize CPU cache 
usage 

• Leverage constant features detection 

• Optimized MSE loss (for GBRT and regression forests) 

• Cached features for Extra Trees 

• Custom pure Cython PRNG and sort routines



source: Understanding Random Forests by Gilles Louppe

http://www.montefiore.ulg.ac.be/~glouppe/pdf/phd-thesis.pdf


source: Blog post by Alex Rubinsteyn

http://blog.explainmydata.com/2014/03/big-speedup-for-random-forest-learning.html




Optimized memory usage for parallel 
training of ensembles of trees

• Extensive use of with nogil blocks in Cython 

• threading backend for joblib in addition to the 
multiprocessing backend 

• Also brings fit-time improvements when training 
many small trees in parallel 

• Memory usage is now:  
    sizeofdata(training_data) + sizeof(all_trees)



Other memory usage 
improvements

• Chunked euclidean distances computation in 
KMeans and Neighbors estimators 

• Support of numpy.memmap input data for shared 
memory (e.g. with GridSearchCV w/ n_jobs=16) 

• GIL-free threading backend for multi-class 
SGDClassifier. 

• Much more: scikit-learn.org/stable/whats_new.html

http://scikit-learn.org/stable/whats_new.html


Cool new tools
to better understand your models



Validation Curves



Validation Curves

overfittingunderfitting



Online documentation on validation curves

http://scikit-learn.org/stable/modules/learning_curve.html#validation-curve


Learning curves 
for logistic regression



Learning curves 
for logistic regression

high bias

high variance
low variance



Learning curves 
on kernel SVM

high variance almost no bias 
!

variance 
 decreasing 

 with #samples



Online documentation on learning curves

http://scikit-learn.org/stable/modules/learning_curve.html#learning-curve


make_pipeline

>>> from sklearn.pipeline import make_pipeline!
>>> from sklearn.naive_bayes import GaussianNB!
>>> from sklearn.preprocessing import StandardScaler!
!
>>> p = make_pipeline(StandardScaler(), GaussianNB())    



Ongoing work in the 
master branch



Neural Networks (GSoC)
• Multiple Layer Feed Forward neural networks (MLP) 

• lbgfs or sgd solver with configurable number of hidden layers 

• partial_fit support with sgd solver 

• scikit-learn/scikit-learn#3204 

• Extreme Learning Machine 

• RP + non-linear activation + linear model 

• Cheap alternative to MLP, Kernel SVC or even Nystroem 

• scikit-learn/scikit-learn#3204

https://github.com/scikit-learn/scikit-learn/pull/3204
https://github.com/scikit-learn/scikit-learn/pull/3204


Impact of RP weight scale 
on ELMs



Incremental PCA
• PCA class with a partial_fit method 

• Constant memory usage, supports for out-of-core 
learning e.g. from the disk in one pass. 

• To be extended to leverage the randomized_svd 
trick to speed up when:  
       n_components << n_features!

• PR scikit-learn/scikit-learn#3285

https://github.com/scikit-learn/scikit-learn/pull/3285


Better pandas support

• CV-related tools now leverage .iloc based 
indexing without array conversion 

• Estimators now leverage NumPy’s __array__ 
protocol implemented by DataFrame and Series 

• Homogeneous feature extraction still required, e.g. 
using sklearn_pandas transformers in a Pipeline

https://github.com/paulgb/sklearn-pandas


Much much more
• Better sparse feature support, in particular for 

ensembles of trees (GSoC) 

• Fast Approximate Nearest neighbors search with 
LSH Forests (GSoC) 

• Many linear model improvements, e.g. 
LogisticRegressionCV to fit on a regularization 
path with warm restarts (GSoC) 

• https://github.com/scikit-learn/scikit-learn/pulls

https://github.com/scikit-learn/scikit-learn/pulls


Personal plans 
for future work



Refactored joblib 
concurrency model

• Use pre-spawned workers without multiprocessing fork (to 
avoid issues with 3rd party threaded libraries) 

• Make workers scheduler-aware to support nested 
parallelism: e.g. cross-validation of GridSearchCV 

• Automatically batch short-running tasks to hide dispatch 
overhead, see joblib/joblib#157 

• Make it possible to delegate queueing scheduling to 3rd 
party cluster runtime: 

• SGE, IPython.parallel, Kubernetes, PySpark

https://github.com/joblib/joblib/pull/157


Thank you!

• http://scikit-learn.org 

• https://github.com/scikit-learn/scikit-learn

@ogrisel

https://github.com/scikit-learn/scikit-learn

