
Machine Learning in
Python with scikit-learn

O’Reilly Webcast
Aug. 2014

Outline
• Machine Learning refresher

• scikit-learn

• How the project is structured

• Some improvements released in 0.15

• Ongoing work for 0.16

Predictive modeling
~= machine learning

• Make predictions of outcome on new data

• Extract the structure of historical data

• Statistical tools to summarize the training data into
a executable predictive model

• Alternative to hard-coded rules written by experts

type!
(category)

rooms!
(int)

surface!
(float m2)

public trans!
(boolean)

Apartment 3 50 TRUE

House 5 254 FALSE

Duplex 4 68 TRUE

Apartment 2 32 TRUE

type!
(category)

rooms!
(int)

surface!
(float m2)

public trans!
(boolean)

Apartment 3 50 TRUE

House 5 254 FALSE

Duplex 4 68 TRUE

Apartment 2 32 TRUE

sold!
(float k€)

450

430

712

234

type!
(category)

rooms!
(int)

surface!
(float m2)

public trans!
(boolean)

Apartment 3 50 TRUE

House 5 254 FALSE

Duplex 4 68 TRUE

Apartment 2 32 TRUE

sold!
(float k€)

450

430

712

234

features target
sa

m
pl

es

(tr
ai

n)

type!
(category)

rooms!
(int)

surface!
(float m2)

public trans!
(boolean)

Apartment 3 50 TRUE

House 5 254 FALSE

Duplex 4 68 TRUE

Apartment 2 32 TRUE

sold!
(float k€)

450

430

712

234

features target
sa

m
pl

es

(tr
ai

n)

Apartment 2 33 TRUE

House 4 210 TRUEsa
m

pl
es

(te

st
) ?

?

Training!
text docs!
images!
sounds!

transactions

Predictive Modeling Data Flow

Training!
text docs!
images!
sounds!

transactions

Labels

Predictive Modeling Data Flow

Training!
text docs!
images!
sounds!

transactions

Labels

Machine!
Learning!
Algorithm

Predictive Modeling Data Flow

Feature vectors

Training!
text docs!
images!
sounds!

transactions

Labels

Machine!
Learning!
Algorithm

Model

Predictive Modeling Data Flow

Feature vectors

New!
text doc!
image!
sound!

transaction

Model Expected!
Label

Predictive Modeling Data Flow

Feature vector

Training!
text docs!
images!
sounds!

transactions

Labels

Machine!
Learning!
Algorithm

Feature vectors

Applications in Business
• Forecast sales, customer churn, traffic, prices

• Predict CTR and optimal bid price for online ads

• Build computer vision systems for robots in the
industry and agriculture

• Detect network anomalies, fraud and spams

• Recommend products, movies, music

Applications in Science
• Decode the activity of the brain recorded via fMRI /

EEG / MEG

• Decode gene expression data to model regulatory
networks

• Predict the distance of each star in the sky

• Identify the Higgs boson in proton-proton collisions

• Library of Machine Learning algorithms

• Focus on established methods (e.g. ESL-II)

• Open Source (BSD)

• Simple fit / predict / transform API

• Python / NumPy / SciPy / Cython

• Model Assessment, Selection & Ensembles

Support Vector Machine

from sklearn.svm import SVC!
!
model = SVC(kernel=“rbf”, C=1.0, gamma=1e-4)!
model.fit(X_train, y_train)!
!
!
y_predicted = model.predict(X_test)!
!
from sklearn.metrics import f1_score!
f1_score(y_test, y_predicted)

Linear Classifier

from sklearn.linear_model import SGDClassifier!
!
model = SGDClassifier(alpha=1e-4, penalty=“elasticnet")!
model.fit(X_train, y_train)!
!
!
y_predicted = model.predict(X_test)!
!
from sklearn.metrics import f1_score!
f1_score(y_test, y_predicted)

Random Forests

from sklearn.ensemble import RandomForestClassifier!
!
model = RandomForestClassifier(n_estimators=200)!
model.fit(X_train, y_train)!
!
!
y_predicted = model.predict(X_test)!
!
from sklearn.metrics import f1_score!
f1_score(y_test, y_predicted)

scikit-learn contributors
• GitHub-centric contribution workflow

• each pull request needs 2 x [+1] reviews

• code + tests + doc + example

• ~94% test coverage / Continuous Integration

• 2-3 major releases per years + bug-fix

• 150+ contributors for release 0.15

scikit-learn
International Sprint

 Paris - 2014

scikit-learn users
• We support users on & ML

• 1500+ questions tagged with [scikit-learn]

• Many competitors + benchmarks

• Many data-driven startups use sklearn

• 500+ answers on 0.13 release user survey

• 60% academics / 40% from industry

New in 0.15

Fit time improvements in
Ensembles of Trees

• Large refactoring of the Cython code base

• Better internal data structures to optimize CPU cache
usage

• Leverage constant features detection

• Optimized MSE loss (for GBRT and regression forests)

• Cached features for Extra Trees

• Custom pure Cython PRNG and sort routines

source: Understanding Random Forests by Gilles Louppe

http://www.montefiore.ulg.ac.be/~glouppe/pdf/phd-thesis.pdf

source: Blog post by Alex Rubinsteyn

http://blog.explainmydata.com/2014/03/big-speedup-for-random-forest-learning.html

Optimized memory usage for parallel
training of ensembles of trees

• Extensive use of with nogil blocks in Cython

• threading backend for joblib in addition to the
multiprocessing backend

• Also brings fit-time improvements when training
many small trees in parallel

• Memory usage is now:  
 sizeofdata(training_data) + sizeof(all_trees)

Other memory usage
improvements

• Chunked euclidean distances computation in
KMeans and Neighbors estimators

• Support of numpy.memmap input data for shared
memory (e.g. with GridSearchCV w/ n_jobs=16)

• GIL-free threading backend for multi-class
SGDClassifier.

• Much more: scikit-learn.org/stable/whats_new.html

http://scikit-learn.org/stable/whats_new.html

Cool new tools
to better understand your models

Validation Curves

Validation Curves

overfittingunderfitting

Online documentation on validation curves

http://scikit-learn.org/stable/modules/learning_curve.html#validation-curve

Learning curves
for logistic regression

Learning curves
for logistic regression

high bias

high variance
low variance

Learning curves
on kernel SVM

high variance almost no bias
!

variance
 decreasing

 with #samples

Online documentation on learning curves

http://scikit-learn.org/stable/modules/learning_curve.html#learning-curve

make_pipeline

>>> from sklearn.pipeline import make_pipeline!
>>> from sklearn.naive_bayes import GaussianNB!
>>> from sklearn.preprocessing import StandardScaler!
!
>>> p = make_pipeline(StandardScaler(), GaussianNB())

Ongoing work in the
master branch

Neural Networks (GSoC)
• Multiple Layer Feed Forward neural networks (MLP)

• lbgfs or sgd solver with configurable number of hidden layers

• partial_fit support with sgd solver

• scikit-learn/scikit-learn#3204

• Extreme Learning Machine

• RP + non-linear activation + linear model

• Cheap alternative to MLP, Kernel SVC or even Nystroem

• scikit-learn/scikit-learn#3204

https://github.com/scikit-learn/scikit-learn/pull/3204
https://github.com/scikit-learn/scikit-learn/pull/3204

Impact of RP weight scale
on ELMs

Incremental PCA
• PCA class with a partial_fit method

• Constant memory usage, supports for out-of-core
learning e.g. from the disk in one pass.

• To be extended to leverage the randomized_svd
trick to speed up when:  
 n_components << n_features!

• PR scikit-learn/scikit-learn#3285

https://github.com/scikit-learn/scikit-learn/pull/3285

Better pandas support

• CV-related tools now leverage .iloc based
indexing without array conversion

• Estimators now leverage NumPy’s __array__
protocol implemented by DataFrame and Series

• Homogeneous feature extraction still required, e.g.
using sklearn_pandas transformers in a Pipeline

https://github.com/paulgb/sklearn-pandas

Much much more
• Better sparse feature support, in particular for

ensembles of trees (GSoC)

• Fast Approximate Nearest neighbors search with
LSH Forests (GSoC)

• Many linear model improvements, e.g.
LogisticRegressionCV to fit on a regularization
path with warm restarts (GSoC)

• https://github.com/scikit-learn/scikit-learn/pulls

https://github.com/scikit-learn/scikit-learn/pulls

Personal plans
for future work

Refactored joblib
concurrency model

• Use pre-spawned workers without multiprocessing fork (to
avoid issues with 3rd party threaded libraries)

• Make workers scheduler-aware to support nested
parallelism: e.g. cross-validation of GridSearchCV

• Automatically batch short-running tasks to hide dispatch
overhead, see joblib/joblib#157

• Make it possible to delegate queueing scheduling to 3rd
party cluster runtime:

• SGE, IPython.parallel, Kubernetes, PySpark

https://github.com/joblib/joblib/pull/157

Thank you!

• http://scikit-learn.org

• https://github.com/scikit-learn/scikit-learn

@ogrisel

https://github.com/scikit-learn/scikit-learn

