Nilearn:

Machine learning for brain imaging in Python

Gaël Varoquaux

INRIA/Parietal

Magnetic Resonance Imaging of the brain

2 Machine learning and brain imaging

1 Magnetic Resonance Imaging of the brain

1 anatomical MRI

- Lesions? Bleeding?
- Shape, cortical thickness

1 functional MRI (fMRI)

1 Mapping cognitive processes with fMRI

2 Machine learning and brain imaging

Medical applications

2 Some prediction problem

Diagnosis

Finding the nature or cause of a disease condition

Pronosis

Predicting the future evolution of the condition

 \Rightarrow Therapeutic indications

Early biomarkers

Measures enabling the detection of disease before standard symptoms

⇒ Population screening

Quantitative biomarkers

Metric to follow disease progression

⇒ Drug development

2 More than prediction accuracy

Cannot replace the physician:

- ■Patient history
- Therapeutic strategies subject to logistics ...
- \Rightarrow No black-box

Segmentation, denoising task

as much as prediction

2 More than prediction accuracy

Cannot replace the physician:

- ■Patient history
- Therapeutic strategies subject to logistics ...
- \Rightarrow No black-box

Segmentation, denoising task

as much as prediction

Understanding brain function

Cognitive neuroimaging:
from neural activity to thoughts

2 Machine learning for cognitive neurolmaging

Learn a bilateral link between brain activity and cognitive function

2 Machine learning for cognitive neurolmaging

Predicting neural response: encoding models

2 Machine learning for cognitive neurolmaging

[Varoquaux & Thirion, 2014]

"Brain reading": decoding

3 NiLearn

Machine learning for Neuro-Imaging in Python

http://nilearn.github.io

3 Going beyond the IEEE publication

How to we reach our target audience (neuroscientists)?

How do we disseminate our ideas?

How do we facilitate new ideas?

3 Going beyond the IEEE publication

How do we disseminate our ideas:

For applied-math research

How do we facilitate new ideas?

For our own lab

3 6 years ago

Visual image reconstruction from human brain activity [Miyawaki, et al. (2008)]

"brain reading"

3 6 years ago ... back to the future

Visual image reconstruction from human brain activity [Miyawaki, et al. (2008)]

"if it's not **open and verifiable by others**, it's not science, or engineering..."

Stodden, 2010

3 6 years ago ... back to the future

Visual image reconstruction from human brain activity [Miyawaki, et al. (2008)]

3 6 years ago ... back to the future

Visual image reconstruction from human brain activity [Miyawaki, et al. (2008)]

Make it work, make it right, make it boring

plot_miyawaki_reconstruction.html

Code, data, ... just worksTM

http://nilearn.github.io

3 Nilearn: making learning for neuroimaging routine

Project scope

CDS-funded

Machine learning for neuroimaging: make using scikit-learn on neuroimaging easy

The target user base is small

Examples in the docs

Run out of the box, downloading open data

Produce a clear figure

Data from Miyawaki 2008

Routine, simple, reproduction of papers

3 Challenges we have to solve

Getting the data

Struggle for open data

Massaging the data for machine-learning Very simple signal processing

Documentation

Users do not know what they need

Output + visualization of results

Putting it in application terms

■Getting the data
files = datasets.fetch_haxby()

Caching of the downloads Resume of partial downloads

■Getting the data
files = datasets.fetch_haxby()

■ Massaging the data for machine-learning masker = NiftiMasker(mask_img='mask.nii', standardize=True)

data = masker.fit_transform('fmri.nii')

Filenames to data matrix (memory-efficient I/O)

Common preprocessing steps included

■ Getting the data files = datasets.fetch_haxby()

■Learning with scikit-learn estimator.fit(data, labels)

That's easy!

■Getting the data
files = datasets.fetch_haxby()

■ Learning with scikit-learn estimator.fit(data, labels)

Output

```
plot_stat_map(masker.inverse_transform(
    estimator.weights_))
```

■ Getting the data files = datasets.fetch_haxby()

■ Massaging the data for machine-learning masker = NiftiMasker(mask_img='mask.nii', standardize=True)

data = masker.fit_transform('fmri.nii')

```
estimator.fi

Demo

Brain reading @ home
```

Output

```
plot_stat_map (masker.inverse_transform (
    estimator.weights_))
```

3 There is more

- Domain-specific brain-reading algorithm
 Image-penalties on linear models
- Unsupervised dictionary-learning
 Brain regions from uncontrolled mental activity
- Graph learning "Connectome": who talks to who

3 NeuroSynth + Neurovault: web brain reading

Nilearn: Machine learning for brain imaging

- Medical and cognitive science applications
- Learning problems, but not only about prediction error

Reaching domain scientists

First challenge: get the user to do simple tasks

Useful for methods research lowers the bar to test methods on new data

