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Introduction 
and 

Motivations



Discovery of 125 GeV Higgs boson is last piece of 
puzzle that falls into place

No more free parameters in SM 

Overwhelming evidence that particle interactions 
are dictated by linearly realized SU(3)xSU(2)xU(1) 
local symmetry

All data consistent with  electroweak symmetry 
breaking SU(2)xU(1)→U(1) proceeding via a single 
doublet Higgs field 

After Higgs discovery



We know physics beyond SM exists (neutrino 
masses, dark matter, inflation, baryon 
asymmetry)

There are also some theoretical hints for 
new physics (strong CP problem, flavor 
hierarchies, gauge coupling unifications, 
naturalness problem)

But there isn’t one model or a class of 
models that is strongly preferred

How to keep open mind on many possible 
forms of new physics?  

What about new physics? 



EFT framework is QFT for low energy 
degrees of freedom, where heavy particles 
that cannot be directly produced have been 
integrated out 

Effects of heavy particles are encoded into 
contact interactions of low energy particles

Under certain assumptions, EFT framework  
allows one to describe effects of new 
physics beyond SM in a model independent 
way

Effective Field Theory Framework 



Philosophy 
of 

EFT framework



EFT framework is commonly used to describe 
physics at low energies, keeping only 
relevant degrees of freedom at these 
energies

EFT can also be used when high energy 
theory is unknown, or when matching 
between high and low energy theories is not 
calculable  

Effective Field Theory Philosphy



In SM, charged current interactions 
mediating weak decays are mediated by W 
bosons

At low energies below W mass, W boson 
can be integrated out, leading to effective 
theory with 4-fermion interactions

In particular, muon decay can be described 
by effective theory with 4-fermion 
interactions between muon, electron, and 2 
neutrinos

EFT example 1 
Fermi Theory of weak interactions



At low energies below W mass, W boson can be 
integrated out, leading to effective theory with 4-
fermion interactions

Some flavor violating operators are loops and CKM 
suppressed, therefore their coefficients are suppressed 
by more than heavy mass scale

Note that loops can and have to be computed on EFT 
side as well

EFT example 2
Weak quark decays
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Figure 4: At tree level one matches the ∆B = 1 diagram from the standard model onto the
∆B = 1 contact interaction of the effective theory. At one loop level one determines the ∆B = 2
contact term of the effective theory by matching the ∆B = 2 box diagram from the standard model
onto the one-loop graph involving the two ∆B = 1 vertices in the effective theory, plus the ∆B = 2
contact term. The calculation requires specification of renormalization scale, conveniently taken
to be µ = MW .

pretty big. Therefore the appropriate thing to do is to compute the anomalous dimension of
the ∆B = 2 operator due to one gluon exchange between quark legs, and run the coupling
down to µ = MB. This procedure sums up powers of αs(MW ) ln MW /MB and leaves one
with an expansion in αs(MB).

This whole procedure is possible because one has separated cleanly the short distance
physics (W exchange) from the long distance physics (gluon exchange) by means of the
effective theory. This procedure was first worked out by Gilman and Wise for the ∆S = 1
Hamiltonian [10]. A detailed analysis of the similar ∆S = 2 effective theory is found in
ref. [3].

2.3 Power counting in a nonperturbative theory

We have seen that the logarithmic renormalizations are interesting in a perturbative theory,
as they determine whether naively marginal operators become relevant or irrelevant when
quantum corrections are included. However, in a strongly coupled, nonperturbative theory,
there may in fact be no relation between the scaling dimensions of operators which were
derived in the classical action, and the true scaling in the quantum theory. In general,
when the couplings of the effective theory are O(1) times the appropriate power of Λ, there
will be a first order phase transition in the theory, and modes will will become heavy with
masses O(Λ), and the theory is of no use for describing physics below the cutoff. However,
in some cases the theory will exhibit a second order phase transition, with the concomitant
diverging correlation lengths, which can be interpreted in terms of particles whose masses
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Chiral perturbation theory. Describes low 
energy interactions of pions. Underlying 
theory is QCD, but coefficients of EFT 
operators cannot be calculated analytically. 
Approximate symmetries inherited from QCD 
provide some guidance. 

Heavy Quark Effective Theory. Describes 
mesons with one heavy quark (charm or 
bottom). 

Non-relativistic QED. Describes bound states 
of electrons, positrons, muons, etc. 

Soft-collinear effective theory.  Describes 
light-like interaction of light quarks.

Phenomenologically important EFT examples



EFTs emerge naturally in particle physics and 
elsewhere, at vastly different scales and kinematical 
regimes

Even when UV theory is known, and matching to IR 
EFT is calculable, EFT is important tool for 
calculations (simplicity, resummation of large logs)

 When IR Lagrangian cannot be calculated, EFT 
framework is important tool to organize physics 
description of low energy theory.  

We expect Standard Model is low-energy effective 
theory to some yet unknown UV theory   

Summary of Introduction



Effective Lagrangian 
for BSM physics 



No new particles at energies  probed by 
LHC

Poincare invariance (Lorentz+translations)

Linearly realized SU(3)xSU(2)xU(1) local 
symmetry spontaneously broken by Higgs 
doublet field vev

Later, more assumptions about approximate 
global symmetries

Effective Theory Approach to BSM
Basic assumptions

Alternatively, 
non-linear Lagrangians

with derivative expansion



Start with SM Lagrangian as lowest order 
approximation.  

Possible new physics effects can be encoded into 
higher dimensional operators added to SM 

Systematic expansion around the SM organized in 
terms of operator dimensions == expansion in new 
physics scale

Effective Theory Approach to BSM
Building effective Lagrangian



EFT comes with many free parameters. But in spite 
of that it predicts correlations between different 
observables 

Framework to combine constraints on new physics 
from Higgs searches, electroweak precision 
observables, gauge boson pair production, fermion 
pair production, dijet production,  atomic parity 
violations, magnetic and electric dipole moments, and 
more...

In case of a signal, offers unbiased hint about 
possible form of new physics

Effective Theory Approach to BSM



If coefficients c of higher dimensional 
operators are order 1, Λ corresponds to mass 
scale on BSM theory with couplings of order 
1 (more generally, Λ ∼ m/g)

Slightly simpler (and completely equivalent) is 
to use EW scale v in denominators and work 
with small coefficients of higher  dimensional 
operators c∼(v/Λ)^(d-4)   

Effective Theory Approach to BSM
Building effective Lagrangian



Operators up to dimension 4 (renormalizable)

18 free parameters (19 with θqcd), all measured 
(constrained)

Fits in T-shirt 

Standard Model Lagrangian

+h.c.



Z and W boson mass ratio related to 
Weinberg angle

Higgs coupling to gauge bosons 
proportional to their mass squared 

Higgs coupling to fermions proportional to 
their mass 

Triple and quartic gauge couplings 
proportional to gauge couplings 

Standard Model Lagrangian

Some predictions at lowest order
+h.c.
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At dimension 5, only operators one can construct are so-
called Weinberg operators 

After EW breaking they give rise to Majorana mass terms 
for SM (left-handed) neutrinos

They have been shown to be present by neutrino oscillation 
experiments

 However, to match the measurements,  their coefficients 
have to be extremely small, c ∼ 10^-11 

Therefore dimension 5 operators have no observable impact 
on collider phenomenology 

Dimension 5 Lagrangian



At dimension 6 level all hell breaks loose

First attempt to enumerate dimension-6 
operators back in the 80s, but only recently 
complete non-redundant set was identified

After imposing baryon and lepton number 
conservation, there  are 2499 non-redundant 
parameters at dimension-6 level

Flavor symmetries dramatically reduce number 
of parameters 

E.g., assuming flavor blind couplings the number 
of parameters is reduced down to 76 

Alonso et al 1312.2014

Dimension 6 Lagrangian

Buchmuller,Wyler
Nucl.Phys. B268 (1986)

Grządkowski et al.
 1008.4884

http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1303.3876


4-fermion 
operators

2-fermion 
dipole 

operators

2-fermion 
vertex 

corrections

 Self-
interactions of 
gauge bosons 

2-fermion 
Yukawa 

interactions

Higgs 
interactions 
with gauge 

bosons

e.g.

e.g. e.g.

e.g.

e.g.

e.g.

Dimension 6 Lagrangian

Higgs 
interactions 
with itself

e.g.



First operator OH shifts kinetic 
term of Higgs bosons

After normalizing Higgs boson field 
properly, universal shift by cH of 
all SM Higgs coupling to matter

Second operator O6 modifies Higgs 
boson self-couplings

One prediction (but difficult to 
test): if triple Higgs couplings 
modified, correlated shift of higher 
self-couplings 

Dimension 6 Lagrangian
Higgs only 
operators



Induces new (not present in 
SM), 3-derivative coupling 
between charged and neutral 
gauge bosons

New sources of CP violation at 
dimension 6 level

Dimension 6 Lagrangian
Gauge only 
operators



These operators modify Higgs couplings to 
gauge bosons

OT modifies Higgs couplings to Z boson mass 
only (custodial symmetry breaking)

OWW, OBB and OS introduce new 2-
derivative Higgs couplings to γγ and Zγ, WW 
and ZZ. Prediction:3 parameters to describe 4 
of these couplings

CP violating Higgs couplings appear

has to rescale the Higgs boson field as h ! (1 � cH)h . After the rescaling, the

Lagrangian describing the single Higgs boson couplings to two SM particles has the

form

Lh = Lh,g + Lh,f . (3.21)

The first term stands for couplings to the SM gauge bosons,

Lh,g =
h

v

�
2cwm

2
WW+

µ W�
µ + czm

2
ZZµZµ

+
g2s
4
cggG

a
µ⌫G

a
µ⌫ �

g2L
2
cwwW

+
µ⌫W

�
µ⌫ �

e2

4
c��Aµ⌫Aµ⌫ � g2L

4 cos2 ✓W
czzZµ⌫Zµ⌫ � egL

2 cos ✓W
cz�Aµ⌫Zµ⌫

+
g2s
4
c̃ggG

a
µ⌫G̃

a
µ⌫ �

g2L
2
c̃wwW

+
µ⌫W̃

�
µ⌫ �

e2

4
c̃��Aµ⌫Ãµ⌫ � g2L

4 cos2 ✓W
c̃zzZµ⌫Z̃µ⌫ � egL

2 cos ✓W
c̃z�Aµ⌫Z̃µ⌫

�
,

(3.22)

The dictionary between these couplings and the parameters in the dimension 6

Lagrangian Eq. (3.2) is the following:

cw = 1� cH ,

cz = 1� cH � cT ,

cgg = 4cGG,

c�� = �4 (cWW � cWB + cBB) ,

cz� = � 2

g2L + g2Y

�
2g2LcWW � (g2L � g2Y )cWB � 2g2Y cBB

�
,

czz = � 4

(g2L + g2Y )
2

�
g4LcWW + 2g2Lg

2
Y cWB + g4Y cBB

�
,

cww = �4cWW . (3.23)

Note that 7 Higgs couplings map to only 6 parameters of the dimension 6 Lagrangians

One finds that couplings satisfy the following relation:

cww = czz +
2g2Y cz�
g2L + g2Y

+
g4Y

(g2L + g2Y )
2
c��. (3.24)
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Dimension 6 Lagrangian
Higgs-Gauge  
operators



The second part contains vertex-type operators:

LD=6
2FV = ic0HQq̄�

i�̄µqH
†�i !DµH +

�
icHUDu

c�µd̄
c✏HDµH + h.c.

�

+ icHQq̄�̄µqH
† !DµH + icHUu

c�µū
cH† !DµH + icHDd

c�µd̄
cH† !DµH

+ ic0HL
¯̀�i�̄µlH

†�i !DµH + icHL
¯̀̄�µlH

† !DµH + icHEe
c�µē

cH† !DµH. (3.6)

They modify the Z and W boson couplings to the SM fermions, and they introduce

new couplings of the Higgs boson.

To be finished.... LD=6
2FD are 2-fermion operators that include the field strength of

the SM gauge fields (so that they contribute to the anomalous dipole moments of the

SM fermions). LD=6
4F are 4-fermion operators.

3.2 Oblique Corrections

Oblique corrections are deviations of the propagators of the SM gauge bosons from

the canonical form. These can be induced by dimension 6 operators, as they modify

quadratic terms of gauge bosons in the Lagrangian. I define the the 2-point functions

of the SM gauge bosons:

M(V1,µ ! V2,⌫) = ⌘µ⌫⇧V1V2(p
2) + pµp⌫⇧̃V1V2(p

2), (3.7)

where p is the momentum of Vi. The propagator function ⇧̃ does not play any role

when the gauge boson couples to massless fermion, or when it couples via a conserved

vector current, which covers most of the phenomenologically interesting cases; we

ignore it in the following. I also define the expansion of the other propagator function

in powers of momentum squared:

⇧V1V2(p
2) = ⇧(0)

V1V2
+ ⇧(2)

V1V2
p2 + ⇧(4)

V1V2
p4 + . . . (3.8)

11

These operators shift Z and W boson couplings to 
leptons and quarks 

Prediction: corrections to W and Z boson 
couplings are correlated

3.3 Gauge Interactions of Fermions

We parametrize the the gauge interactions of the SM fermions with electroweak gauge

bosons as

LffV = eAµ

X

f=u,d,e

Qf

�
f̄ �̄µf + f c�µf̄

c
�

+
gLp
2
W+

µ

⇥
(1 + �gqW,L)ū�̄µVCKMd+ �gqW,Ru

c�µd̄
c + (1 + �g`W,L)ē�̄µ⌫

⇤
+ h.c.

+
q
g2L + g2YZµ

X

f=u,d,e,⌫

(T 3
f � sin2 ✓WQf + �gfZ,L)f̄ �̄µf

+
q
g2L + g2YZµ

X

f=u,d,e

(� sin2 ✓WQf + �gfZ,R)f
c�µf̄

c (3.14)

A useful formula to translate from dimension 6 operators in Eq. (3.6) to couplings:

DµH =
1p
2

0

B@
� i

2
(W 1

µ � iW 2
µ)(v + h)

@µh� i
2
(�W 3 +B)(v + h)

1

CA =

0

B@
� i

2
gLW+

µ (v + h)

1p
2
@µh+ igZ

2
p
2
Zµ(v + h)

1

CA(3.15)

Using this, I find the vertex operators shift the quark couplings as

�gqW,L = c0HQ,

�gqW,R = �cHUD

2
,

�guZ,L =
c0HQ

2
� cHQ

2
,

�gdZ,L = �c0HQ

2
� cHQ

2
,

�guZ,R = �cHU

2
,

�gdZ,R = �cHD

2
, (3.16)
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and the lepton coupling as

�g`W,L = c0HL,

�g⌫Z,L =
c0HL

2
� cHL

2
,

�geZ,L = �c0HL

2
� cHL

2
,

�geZ,R = �cHE

2
. (3.17)

Thus, the dimension 6 Lagrangian correlates the shift of the W boson left-handed

couplings to the shift of the Z-boson left-handed couplings: �gqW,L = �guZ,L � �gdZ,L,

�g`W,L = �g⌫Z,L � �geZ,L. This reduces the number of independent vertex corrections

from 10 down to 8.

3.4 Triple Gauge Couplings

In full generality, the triple gauge couplings with 1 neutral and 2 charged bosons can

be parametrized as

LTGC =
X

V=A,Z

gVWW

�L+
TGC + L�

TGC

�

L+
TGC =igV1

�
W+

µ⌫W
�
µ �W�

µ⌫W
+
µ

�
V⌫ + iV Vµ⌫ W

+
µ W�

⌫

+ i
�V

m2
W

W+
µ⌫W

�
⌫⇢V⇢µ + gV5 ✏µ⌫⇢�

�
W+

µ @⇢W
�
⌫ � @⇢W

+
µ W�

⌫

�
V�

L�
TGC =i

�̃V

m2
W

W+
µ⌫W

�
⌫⇢Ṽ⇢µ + g̃V4 W

+
µ W�

⌫ (@µV⌫ + @⌫Vµ) + ĩVW
+
µ W�

⌫ Ṽµ⌫

(3.18)

where Vµ⌫ = @µV⌫ � @⌫Vµ, Ṽµ⌫ = ✏µ⌫⇢�@⇢V�, gAWW = e ⌘ gLgY /
p
g2L + g2Y , gZWW =

p
g2L + g2Y cos2 ✓W ⌘ g2L/

p
g2L + g2Y . Unbroken electromagnetic gauge invariance im-

plies gA1 = 1, g̃A4 = gA5 = 0. We split these interactions into the CP-even (+) and

CP-odd (-) parts.2 The first five terms in L+
TGC are C- and P-even, and follow the

2C acts as W± ! �W⌥, V ! �V . P acts as V0 ! V0, Vi ! �Vi, @0 ! @0, @i ! �@i.
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Dimension 6 Lagrangian

Vertex 
Operators



2-fermion Yukawa operators modify 
Higgs couplings to fermions 

2-fermion dipole operators contribute 
to anomalous magnetic and electric 
moments of quark and leptons

4-fermion operators contribute to 
non-resonant electron and quark 
scattering 

Dimension 6 Lagrangian
Remaining Operators



Dimension 6 operators can modify all 
couplings present in the SM 

They also introduce new couplings with a 
new tensor structure that is not present in 
the SM

Dimension 6 Lagrangian



Operators can be traded for other operators using integration by 
parts and equations of motion

Because of that, one can choose many different bases == non-
redundant sets of operators 

All bases are equivalent, but some are more equivalent convenient.

Here I stick to the so-called Warsaw basis. It is distinguished by 
the simplest tensor structure of Higgs and matter couplings

Other basis choices exist in the literature, they may be more 
convenient for particular applications, or they may connect better 
to certain classes of BSM model 

Basis choice

Grządkowski et al.
 1008.4884

see e.g. 
Giudice et al  hep-ph/0703164

Contino et al 1303.3876 

http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/arXiv:1303.3876
http://arxiv.org/abs/arXiv:1303.3876


Synergy
between Higgs and EWPT 



OT modifies Higgs couplings to Z boson mass 
only (custodial symmetry breaking)

OWW, OBB and OS introduce new 2-derivative 
Higgs couplings to γγ and Zγ, WW and ZZ 

has to rescale the Higgs boson field as h ! (1 � cH)h . After the rescaling, the

Lagrangian describing the single Higgs boson couplings to two SM particles has the

form

Lh = Lh,g + Lh,f . (3.21)

The first term stands for couplings to the SM gauge bosons,

Lh,g =
h

v

�
2cwm

2
WW+

µ W�
µ + czm

2
ZZµZµ

+
g2s
4
cggG

a
µ⌫G

a
µ⌫ �

g2L
2
cwwW

+
µ⌫W

�
µ⌫ �

e2

4
c��Aµ⌫Aµ⌫ � g2L

4 cos2 ✓W
czzZµ⌫Zµ⌫ � egL

2 cos ✓W
cz�Aµ⌫Zµ⌫

+
g2s
4
c̃ggG

a
µ⌫G̃

a
µ⌫ �

g2L
2
c̃wwW

+
µ⌫W̃

�
µ⌫ �

e2

4
c̃��Aµ⌫Ãµ⌫ � g2L

4 cos2 ✓W
c̃zzZµ⌫Z̃µ⌫ � egL

2 cos ✓W
c̃z�Aµ⌫Z̃µ⌫

�
,

(3.22)

The dictionary between these couplings and the parameters in the dimension 6

Lagrangian Eq. (3.2) is the following:

cw = 1� cH ,

cz = 1� cH � cT ,

cgg = 4cGG,

c�� = �4 (cWW � cWB + cBB) ,

cz� = � 2

g2L + g2Y

�
2g2LcWW � (g2L � g2Y )cWB � 2g2Y cBB

�
,

czz = � 4

(g2L + g2Y )
2

�
g4LcWW + 2g2Lg

2
Y cWB + g4Y cBB

�
,

cww = �4cWW . (3.23)

Note that 7 Higgs couplings map to only 6 parameters of the dimension 6 Lagrangians

One finds that couplings satisfy the following relation:

cww = czz +
2g2Y cz�
g2L + g2Y

+
g4Y

(g2L + g2Y )
2
c��. (3.24)
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Higgs gauge operators and Higgs couplings



Higgs gauge operators and oblique corrections

Two of these operators contribute to EW precision 
observables 

OT and OS affect propagators of EW gauge 
bosons (equivalent to Peskin-Takeuchi T and S 
parameters)

Therefore these 2 operators are probed by V-pole 
measurements, in particular Z-pole measurements 
at LEP-1 and W mass measurements at LEP-2 and 
Tevatron 



Higgs gauge operators and VV production

One of these operators contributes to vector 
boson pair production 

OS induces anomalous triple gauge couplings κγ 
and g1Z in the standard Hagiwara et al 
parametrization

Therefore this parameter  can be probed by WW 
and WZ production at LEP-2 and LHC  

Hagiwara et al, 
Phys.Rev. D48 (1993)



The second part contains vertex-type operators:

LD=6
2FV = ic0HQq̄�

i�̄µqH
†�i !DµH +

�
icHUDu

c�µd̄
c✏HDµH + h.c.

�

+ icHQq̄�̄µqH
† !DµH + icHUu

c�µū
cH† !DµH + icHDd

c�µd̄
cH† !DµH

+ ic0HL
¯̀�i�̄µlH

†�i !DµH + icHL
¯̀̄�µlH

† !DµH + icHEe
c�µē

cH† !DµH. (3.6)

They modify the Z and W boson couplings to the SM fermions, and they introduce

new couplings of the Higgs boson.

To be finished.... LD=6
2FD are 2-fermion operators that include the field strength of

the SM gauge fields (so that they contribute to the anomalous dipole moments of the

SM fermions). LD=6
4F are 4-fermion operators.

3.2 Oblique Corrections

Oblique corrections are deviations of the propagators of the SM gauge bosons from

the canonical form. These can be induced by dimension 6 operators, as they modify

quadratic terms of gauge bosons in the Lagrangian. I define the the 2-point functions

of the SM gauge bosons:

M(V1,µ ! V2,⌫) = ⌘µ⌫⇧V1V2(p
2) + pµp⌫⇧̃V1V2(p

2), (3.7)

where p is the momentum of Vi. The propagator function ⇧̃ does not play any role

when the gauge boson couples to massless fermion, or when it couples via a conserved

vector current, which covers most of the phenomenologically interesting cases; we

ignore it in the following. I also define the expansion of the other propagator function

in powers of momentum squared:

⇧V1V2(p
2) = ⇧(0)

V1V2
+ ⇧(2)

V1V2
p2 + ⇧(4)

V1V2
p4 + . . . (3.8)
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Vertex operators and fermion couplings

These operators contribute to EW precision 
observables 

They shift the Z and W boson couplings to leptons 
and quarks 

Therefore they can be  probed by V-pole 
measurements 

3.3 Gauge Interactions of Fermions

We parametrize the the gauge interactions of the SM fermions with electroweak gauge

bosons as

LffV = eAµ

X

f=u,d,e

Qf

�
f̄ �̄µf + f c�µf̄

c
�

+
gLp
2
W+

µ

⇥
(1 + �gqW,L)ū�̄µVCKMd+ �gqW,Ru

c�µd̄
c + (1 + �g`W,L)ē�̄µ⌫

⇤
+ h.c.

+
q
g2L + g2YZµ

X

f=u,d,e,⌫

(T 3
f � sin2 ✓WQf + �gfZ,L)f̄ �̄µf

+
q
g2L + g2YZµ

X

f=u,d,e

(� sin2 ✓WQf + �gfZ,R)f
c�µf̄

c (3.14)

A useful formula to translate from dimension 6 operators in Eq. (3.6) to couplings:

DµH =
1p
2

0

B@
� i

2
(W 1

µ � iW 2
µ)(v + h)

@µh� i
2
(�W 3 +B)(v + h)

1

CA =

0

B@
� i

2
gLW+

µ (v + h)

1p
2
@µh+ igZ

2
p
2
Zµ(v + h)

1

CA(3.15)

Using this, I find the vertex operators shift the quark couplings as

�gqW,L = c0HQ,

�gqW,R = �cHUD

2
,

�guZ,L =
c0HQ

2
� cHQ

2
,

�gdZ,L = �c0HQ

2
� cHQ

2
,

�guZ,R = �cHU

2
,

�gdZ,R = �cHD

2
, (3.16)
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and the lepton coupling as

�g`W,L = c0HL,

�g⌫Z,L =
c0HL

2
� cHL

2
,

�geZ,L = �c0HL

2
� cHL

2
,

�geZ,R = �cHE

2
. (3.17)

Thus, the dimension 6 Lagrangian correlates the shift of the W boson left-handed

couplings to the shift of the Z-boson left-handed couplings: �gqW,L = �guZ,L � �gdZ,L,

�g`W,L = �g⌫Z,L � �geZ,L. This reduces the number of independent vertex corrections

from 10 down to 8.

3.4 Triple Gauge Couplings

In full generality, the triple gauge couplings with 1 neutral and 2 charged bosons can

be parametrized as

LTGC =
X

V=A,Z

gVWW

�L+
TGC + L�

TGC

�

L+
TGC =igV1

�
W+

µ⌫W
�
µ �W�

µ⌫W
+
µ

�
V⌫ + iV Vµ⌫ W

+
µ W�

⌫

+ i
�V

m2
W

W+
µ⌫W

�
⌫⇢V⇢µ + gV5 ✏µ⌫⇢�

�
W+

µ @⇢W
�
⌫ � @⇢W

+
µ W�

⌫

�
V�

L�
TGC =i

�̃V

m2
W

W+
µ⌫W

�
⌫⇢Ṽ⇢µ + g̃V4 W

+
µ W�

⌫ (@µV⌫ + @⌫Vµ) + ĩVW
+
µ W�

⌫ Ṽµ⌫

(3.18)

where Vµ⌫ = @µV⌫ � @⌫Vµ, Ṽµ⌫ = ✏µ⌫⇢�@⇢V�, gAWW = e ⌘ gLgY /
p
g2L + g2Y , gZWW =

p
g2L + g2Y cos2 ✓W ⌘ g2L/

p
g2L + g2Y . Unbroken electromagnetic gauge invariance im-

plies gA1 = 1, g̃A4 = gA5 = 0. We split these interactions into the CP-even (+) and

CP-odd (-) parts.2 The first five terms in L+
TGC are C- and P-even, and follow the

2C acts as W± ! �W⌥, V ! �V . P acts as V0 ! V0, Vi ! �Vi, @0 ! @0, @i ! �@i.
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The second part contains vertex-type operators:

LD=6
2FV = ic0HQq̄�

i�̄µqH
†�i !DµH +

�
icHUDu

c�µd̄
c✏HDµH + h.c.

�

+ icHQq̄�̄µqH
† !DµH + icHUu

c�µū
cH† !DµH + icHDd

c�µd̄
cH† !DµH

+ ic0HL
¯̀�i�̄µlH

†�i !DµH + icHL
¯̀̄�µlH

† !DµH + icHEe
c�µē

cH† !DµH. (3.6)

They modify the Z and W boson couplings to the SM fermions, and they introduce

new couplings of the Higgs boson.

To be finished.... LD=6
2FD are 2-fermion operators that include the field strength of

the SM gauge fields (so that they contribute to the anomalous dipole moments of the

SM fermions). LD=6
4F are 4-fermion operators.

3.2 Oblique Corrections

Oblique corrections are deviations of the propagators of the SM gauge bosons from

the canonical form. These can be induced by dimension 6 operators, as they modify

quadratic terms of gauge bosons in the Lagrangian. I define the the 2-point functions

of the SM gauge bosons:

M(V1,µ ! V2,⌫) = ⌘µ⌫⇧V1V2(p
2) + pµp⌫⇧̃V1V2(p

2), (3.7)

where p is the momentum of Vi. The propagator function ⇧̃ does not play any role

when the gauge boson couples to massless fermion, or when it couples via a conserved

vector current, which covers most of the phenomenologically interesting cases; we

ignore it in the following. I also define the expansion of the other propagator function

in powers of momentum squared:

⇧V1V2(p
2) = ⇧(0)

V1V2
+ ⇧(2)

V1V2
p2 + ⇧(4)

V1V2
p4 + . . . (3.8)

11

Vertex operators and VV production

These operators contribute to vector boson pair 
production, by shifting electron and quark 
couplings to W and Z

Therefore they can be  probed by by WW and 
WZ production at LEP-2 and LHC  

and the lepton coupling as

�g`W,L = c0HL,

�g⌫Z,L =
c0HL

2
� cHL

2
,

�geZ,L = �c0HL

2
� cHL

2
,

�geZ,R = �cHE

2
. (3.17)

Thus, the dimension 6 Lagrangian correlates the shift of the W boson left-handed

couplings to the shift of the Z-boson left-handed couplings: �gqW,L = �guZ,L � �gdZ,L,

�g`W,L = �g⌫Z,L � �geZ,L. This reduces the number of independent vertex corrections

from 10 down to 8.

3.4 Triple Gauge Couplings

In full generality, the triple gauge couplings with 1 neutral and 2 charged bosons can

be parametrized as

LTGC =
X

V=A,Z

gVWW

�L+
TGC + L�

TGC

�

L+
TGC =igV1

�
W+

µ⌫W
�
µ �W�

µ⌫W
+
µ

�
V⌫ + iV Vµ⌫ W

+
µ W�

⌫

+ i
�V

m2
W

W+
µ⌫W

�
⌫⇢V⇢µ + gV5 ✏µ⌫⇢�

�
W+

µ @⇢W
�
⌫ � @⇢W

+
µ W�

⌫

�
V�

L�
TGC =i

�̃V

m2
W

W+
µ⌫W

�
⌫⇢Ṽ⇢µ + g̃V4 W

+
µ W�

⌫ (@µV⌫ + @⌫Vµ) + ĩVW
+
µ W�

⌫ Ṽµ⌫

(3.18)

where Vµ⌫ = @µV⌫ � @⌫Vµ, Ṽµ⌫ = ✏µ⌫⇢�@⇢V�, gAWW = e ⌘ gLgY /
p
g2L + g2Y , gZWW =

p
g2L + g2Y cos2 ✓W ⌘ g2L/

p
g2L + g2Y . Unbroken electromagnetic gauge invariance im-

plies gA1 = 1, g̃A4 = gA5 = 0. We split these interactions into the CP-even (+) and

CP-odd (-) parts.2 The first five terms in L+
TGC are C- and P-even, and follow the

2C acts as W± ! �W⌥, V ! �V . P acts as V0 ! V0, Vi ! �Vi, @0 ! @0, @i ! �@i.
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Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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The second part contains vertex-type operators:

LD=6
2FV = ic0HQq̄�

i�̄µqH
†�i !DµH +

�
icHUDu

c�µd̄
c✏HDµH + h.c.

�

+ icHQq̄�̄µqH
† !DµH + icHUu

c�µū
cH† !DµH + icHDd

c�µd̄
cH† !DµH

+ ic0HL
¯̀�i�̄µlH

†�i !DµH + icHL
¯̀̄�µlH

† !DµH + icHEe
c�µē

cH† !DµH. (3.6)

They modify the Z and W boson couplings to the SM fermions, and they introduce

new couplings of the Higgs boson.

To be finished.... LD=6
2FD are 2-fermion operators that include the field strength of

the SM gauge fields (so that they contribute to the anomalous dipole moments of the

SM fermions). LD=6
4F are 4-fermion operators.

3.2 Oblique Corrections

Oblique corrections are deviations of the propagators of the SM gauge bosons from

the canonical form. These can be induced by dimension 6 operators, as they modify

quadratic terms of gauge bosons in the Lagrangian. I define the the 2-point functions

of the SM gauge bosons:

M(V1,µ ! V2,⌫) = ⌘µ⌫⇧V1V2(p
2) + pµp⌫⇧̃V1V2(p

2), (3.7)

where p is the momentum of Vi. The propagator function ⇧̃ does not play any role

when the gauge boson couples to massless fermion, or when it couples via a conserved

vector current, which covers most of the phenomenologically interesting cases; we

ignore it in the following. I also define the expansion of the other propagator function

in powers of momentum squared:

⇧V1V2(p
2) = ⇧(0)

V1V2
+ ⇧(2)

V1V2
p2 + ⇧(4)

V1V2
p4 + . . . (3.8)
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Vertex operators and Higgs couplings

These operators also affect Higgs searches

On one hand, they contribute to Higgs decays via 
intermediate gauge bosons, by shifting couplings 
of the latter to fermions

On the other hand, they also induce new h V f f 
contact interactions

and the lepton coupling as

�g`W,L = c0HL,

�g⌫Z,L =
c0HL

2
� cHL

2
,

�geZ,L = �c0HL

2
� cHL

2
,

�geZ,R = �cHE

2
. (3.17)

Thus, the dimension 6 Lagrangian correlates the shift of the W boson left-handed

couplings to the shift of the Z-boson left-handed couplings: �gqW,L = �guZ,L � �gdZ,L,

�g`W,L = �g⌫Z,L � �geZ,L. This reduces the number of independent vertex corrections

from 10 down to 8.

3.4 Triple Gauge Couplings

In full generality, the triple gauge couplings with 1 neutral and 2 charged bosons can

be parametrized as

LTGC =
X

V=A,Z

gVWW

�L+
TGC + L�

TGC

�

L+
TGC =igV1

�
W+

µ⌫W
�
µ �W�

µ⌫W
+
µ

�
V⌫ + iV Vµ⌫ W

+
µ W�

⌫

+ i
�V

m2
W

W+
µ⌫W

�
⌫⇢V⇢µ + gV5 ✏µ⌫⇢�

�
W+

µ @⇢W
�
⌫ � @⇢W

+
µ W�

⌫

�
V�

L�
TGC =i

�̃V

m2
W

W+
µ⌫W

�
⌫⇢Ṽ⇢µ + g̃V4 W

+
µ W�

⌫ (@µV⌫ + @⌫Vµ) + ĩVW
+
µ W�

⌫ Ṽµ⌫

(3.18)

where Vµ⌫ = @µV⌫ � @⌫Vµ, Ṽµ⌫ = ✏µ⌫⇢�@⇢V�, gAWW = e ⌘ gLgY /
p
g2L + g2Y , gZWW =

p
g2L + g2Y cos2 ✓W ⌘ g2L/

p
g2L + g2Y . Unbroken electromagnetic gauge invariance im-

plies gA1 = 1, g̃A4 = gA5 = 0. We split these interactions into the CP-even (+) and

CP-odd (-) parts.2 The first five terms in L+
TGC are C- and P-even, and follow the

2C acts as W± ! �W⌥, V ! �V . P acts as V0 ! V0, Vi ! �Vi, @0 ! @0, @i ! �@i.
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The same operators are probed by Higgs 
physics, Z-pole measurements and vector 
boson pair production

Starting from precision measurement one can 
formulate model independent predictions 
concerning what kind of Higgs signals are 
possible 

Synergy



Current precision 
constraints

on dimension 6 operators 



Current precision 
constraints

on dimension 6 operators 

Preliminary



Taking into account coefficients of dimension-6 operators at the 
linear level (except at the very end)

I’m assuming flavor blind vertex corrections (more general approach 
left for  future work) 

Restrict to observables that do not depend on 4-fermion operators 
(more general approach left for  future work)

EFT approach to BSM

In this talk:



For V-pole observables, interference between  SM and 4-fermion operators is 
suppressed by Γ/m

Corrections can be expressed by Higgs-gauge and vertex operators only  (+1 four-
fermion operator contributing to Γμ ). For example:

V-pole constraints 

Observable Experimental value SM prediction

�Z [GeV] 2.4952± 0.0023 2.4954
�had [nb] 41.540± 0.037 41.478

R` 20.767± 0.025 20.741
A` 0.1499± 0.0018 0.1473

A0,`
FB 0.0171± 0.0010 0.0162

Rb 0.21629± 0.00066 0.21474
Ab 0.923± 0.020 0.935
AFB

b 0.0992± 0.0016 0.1032
Rc 0.1721± 0.0030 0.1724
Ac 0.670± 0.027 0.667
AFB

c 0.0707± 0.0035 0.073

Table 4.1: Experimental values of the Z-pole observables as quoted in Ref. [10],
except for A` where the SLC-LEP1 combination from Ref. [11] is given. The errors
of the first six observables are correlated among each other and, likewise, the errors
of the heavy flavor observables are correlated. For the theoretical predictions I use
the best fit SM values from GFitter [11].

parameters. Under new physics corrections the partial width shift as

��(Z ! ff̄) =
Nfm̂Z

12⇡

h
gfZ,L

⇣
gfZ,L

�gZ,e↵

gZ
� gZQf�s2e↵ + �gfZ,L

⌘

+gfZ,R
⇣
gfZ,R

�gZ,e↵

gZ
� gZQf�s2e↵ + �gfZ,R

⌘i
(4.15)

LEP-1 measured all of those but, instead of the partial widths, the experiments

usually quote a set of observables constructed out the ratios of the decay widths.

Their experimental values and SM predictions are summarized in Table 4.1. Below

I discuss the dependence of the Z-pole observables on new physics corrections. One

can easily obtain the analytic expression for the dependence of the Z-pole observables,

but the formulas are lengthy and not particularly revealing. Therefore, below I only

quote approximate numerical dependence.

�Z : The total width of the Z boson is the sum over all partial widths. One should

note ��Z depends on a di↵erent combination of oblique corrections than mW ,

and of course on a di↵erent combination of vertex correction.
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Z pole
Observable Experimental value SM prediction

mW [GeV] 80.385± 0.015 [12] 80.3602
�W [GeV] 2.085± 0.042 [13] 2.091

Br(W ! had) [%] 67.41± 0.27 [?] 67.51

Table 4.2: W-pole observables. The hadronic branching fractions assume lepton flavor
inversality. For the theoretical predictions of mW and �W , I use the best fit SM values
from GFitter [11], while for Br(W ! had) I take the value quoted in [?].

Assuming flavor blind couplings, in terms of dimension 6 operators the mass and

e↵ective couplings shift as

�mW =
mW

g2L � g2Y

✓
g2LcT � g2Lg

2
Y cWB � g2Y c

0
HL � g2Y

4
cll

◆
,

�g`W,L,e↵ =
gL

g2L � g2Y

✓
g2LcT � g2Lg

2
Y cWB � g2Y c

0
HL � g2L

4
cll

◆
,

�gqW,L,e↵ =
gL

g2L � g2Y

✓
g2LcT � g2Lg

2
Y cWB � g2Lc

0
HL � g2Y c

0
HQ � g2L

4
cll

◆
. (4.28)

From that it is easy to derive the shift of he partial widths using ��(W ! ff 0) =

Nf m̂W

24⇡
gL�gfW,L,e↵ .

The current experimental information on the W-pole observables boson mass is

summarized in Table 4.2. The new physics corrections can be found using the above

formulas in addition to �W =
P

f �(W ! ff 0) and Br(W ! had) =
P

q �(W !
qq0)/�W .

To summarize, the W pole measurements constrains 3 combinations of parameters

in the e↵ective Lagrangian, the ones in Eq. (4.28).

4.4 Gauge boson pair production

We move to o↵-Z-pole observables, starting with WW pair production. The total

cross sections and angular distributions for process were measured by LEP-2 at several

center-of-mass energies
p
s.
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W pole

Input: mZ, α(0), Γμ

For example



Assume first new physics affects only oblique 
operators OS and OT

Then V-pole measurements imply very strong 
limits on these operators 

In other words, new physics scale suppressing 
these operators is in few-10 TeV ballpark

If that is the case: 
- Higgs coupling to W and Z mass (set by cT)  
mismatch must be unobservably small  
- 2-derivative Higgs couplings to WW, ZZ are 
tightly correlated with couplings to Zγ and γγ 

V-pole constraints 

has to rescale the Higgs boson field as h ! (1 � cH)h . After the rescaling, the

Lagrangian describing the single Higgs boson couplings to two SM particles has the

form

Lh = Lh,g + Lh,f . (3.21)

The first term stands for couplings to the SM gauge bosons,

Lh,g =
h

v

�
2cwm

2
WW+

µ W�
µ + czm

2
ZZµZµ

+
g2s
4
cggG

a
µ⌫G

a
µ⌫ �

g2L
2
cwwW

+
µ⌫W

�
µ⌫ �

e2

4
c��Aµ⌫Aµ⌫ � g2L

4 cos2 ✓W
czzZµ⌫Zµ⌫ � egL

2 cos ✓W
cz�Aµ⌫Zµ⌫

+
g2s
4
c̃ggG

a
µ⌫G̃

a
µ⌫ �

g2L
2
c̃wwW

+
µ⌫W̃

�
µ⌫ �

e2

4
c̃��Aµ⌫Ãµ⌫ � g2L

4 cos2 ✓W
c̃zzZµ⌫Z̃µ⌫ � egL

2 cos ✓W
c̃z�Aµ⌫Z̃µ⌫

�
,

(3.22)

The dictionary between these couplings and the parameters in the dimension 6

Lagrangian Eq. (3.2) is the following:

cw = 1� cH ,

cz = 1� cH � cT ,

cgg = 4cGG,

c�� = �4 (cWW � cWB + cBB) ,

cz� = � 2

g2L + g2Y

�
2g2LcWW � (g2L � g2Y )cWB � 2g2Y cBB

�
,

czz = � 4

(g2L + g2Y )
2

�
g4LcWW + 2g2Lg

2
Y cWB + g4Y cBB

�
,

cww = �4cWW . (3.23)

Note that 7 Higgs couplings map to only 6 parameters of the dimension 6 Lagrangians

One finds that couplings satisfy the following relation:

cww = czz +
2g2Y cz�
g2L + g2Y

+
g4Y

(g2L + g2Y )
2
c��. (3.24)
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But this is
not robust
conclusion! 



Assuming flavor blind vertex corrections here. 

V-pole observables depend on 10 effective theory parameters

We have 11 precisely measured independent V-pole observables

So we can constrain all these parameters ? No... 

The second part contains vertex-type operators:

LD=6
2FV = ic0HQq̄�

i�̄µqH
†�i !DµH +

�
icHUDu

c�µd̄
c✏HDµH + h.c.

�

+ icHQq̄�̄µqH
† !DµH + icHUu

c�µū
cH† !DµH + icHDd

c�µd̄
cH† !DµH

+ ic0HL
¯̀�i�̄µlH

†�i !DµH + icHL
¯̀̄�µlH

† !DµH + icHEe
c�µē

cH† !DµH. (3.6)

They modify the Z and W boson couplings to the SM fermions, and they introduce

new couplings of the Higgs boson.

To be finished.... LD=6
2FD are 2-fermion operators that include the field strength of

the SM gauge fields (so that they contribute to the anomalous dipole moments of the

SM fermions). LD=6
4F are 4-fermion operators.

3.2 Oblique Corrections

Oblique corrections are deviations of the propagators of the SM gauge bosons from

the canonical form. These can be induced by dimension 6 operators, as they modify

quadratic terms of gauge bosons in the Lagrangian. I define the the 2-point functions

of the SM gauge bosons:

M(V1,µ ! V2,⌫) = ⌘µ⌫⇧V1V2(p
2) + pµp⌫⇧̃V1V2(p

2), (3.7)

where p is the momentum of Vi. The propagator function ⇧̃ does not play any role

when the gauge boson couples to massless fermion, or when it couples via a conserved

vector current, which covers most of the phenomenologically interesting cases; we

ignore it in the following. I also define the expansion of the other propagator function

in powers of momentum squared:

⇧V1V2(p
2) = ⇧(0)

V1V2
+ ⇧(2)

V1V2
p2 + ⇧(4)

V1V2
p4 + . . . (3.8)
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V-pole constraints 



In general, V pole measurements depend at linear 
level on 10 dimension-six operators 

One can show that LEP constrains 8  combinations 
of EFT parameters: c-hats to the right 

Limits on these combinations are O(0.001) for 
leptonic vertex corrections and O(0.01) for quark 
ones, much better than the precision of WW cross 
section measurements 

This leaves 2 EFT directions that can visibly affect  
Higgs searches at the linear level

These 2 directions can be parameterized by cT, cS, 
simply related to usual S and T parameters

From LEP-1 and Tevatron V-pole data alone there’s 
no model independent constraints on S and T!  In 
particular, custodial symmetry breaking is not 
constrained at all! 

Gupta et al, 1405.0181

V-pole flat directions

http://arxiv.org/abs/arXiv:1405.0181
http://arxiv.org/abs/arXiv:1405.0181


The flat directions arise due to EFT operator identities

V-pole flat directions

Obviously, operators OW and OB do  not affect Z and W couplings to fermions

They only affect gauge boson propagators (S parameter) and Higgs couplings to 
gauge bosons. Moreover, OW affects triple gauge couplings   

They are not part of  Warsaw basis, because they are redundant with vertex 
corrections.  

Conversely, this means that there are 2 combinations of vertex corrections whose 
effect on V-pole observables is identical to that of S and T parameter!

These 2 flat directions are lifted only when VV production data are included 



VV production 

e+ W+
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e− W−
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Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.5: Feynman diagrams (NC02) for the process e+e− → ZZ at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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Depends on triple gauge couplings

Also depends on electron/quark couplings to W and 
Z bosons and on operators modifying EW gauge 
boson propagators 

Indirectly, depends on operators shifting the SM 
reference parameters (GF, α, mZ)

WW production at LEP and LHC



WW production in effective theory

2 operators (in Warsaw 
basis) affecting TGCs

7 operators (in Warsaw 
basis) affecting electron/
quark couplings to W/Z

2 operators entering 
indirectly by affecting SM 
parameters 

In total, 11 dimension-six 
operators affecting WW 
production 

8 combinations of 10 
operators are constrained 
by V-pole measurements, 
while c3W is not 
constrained

Using Warsaw basis. Showing only operators 
affecting WW cross section at linear level. For 

simplicity, assuming flavor blind couplings. 



11 parameters affecting WW and WZ production at linear level  

8 combinations of 10 parameters are constrained by V-pole measurements, while 
c3W is not constrained by those 

Precision of WW measurements is only O(1)%  in LEP and O(10%) in LHC, 
compared with O(0.1%) precision of LEP measurement of leptonic vertex 
corrections and oblique corrections 

Thus, these 8 EFT directions constrained by V-pole measurements  are hardly 
relevant for WW and WZ measurements, given existing constraints

We can use a simplified treatment of WW and WZ production, with only 3 free 
parameters  

V-pole constraints



One can prove that these 3 EFT directions are 
EQUIVALENT to the usual 3 dimensional  TGC 
parameterization

cT, cS, c3W can be mapped to g1Z, κγ and λZ

Constraining these 3 TGCs gives a decent 
approximation of the constraints on EFT 
parameters cT, cS, c3W

Constraint on vertex corrections can be obtained, 
again to a decent accuracy, assuming c-hats are 
zero

Simplified EFT for WW production

Z



Total and differential WW production cross 
section at different energies of LEP-2

Single W production cross section at different 
energies of LEP-2

Total WW and WZ production cross section at 7 
and 8 TeV LHC  

Constraints from VV production
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Figure 5.1: Measurements of the W-pair production cross-section, compared to the predictions
of RACOONWW [168] and YFSWW [161, 167]. The shaded area represents the uncertainty
on the theoretical predictions, estimated as ±2% for

√
s < 170 GeV and ranging from 0.7 to

0.4% above 170 GeV. The W mass is fixed at 80.35 GeV; its uncertainty is expected to give a
significant contribution only at threshold energies.91

Fitting to following data:
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Figure 1.4: Feynman diagrams (CC03) for the process e+e− → W+W− at the Born level.
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.
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Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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Total and differential WW production cross 
section at different energies of LEP-2

Single W production cross section at different 
energies of LEP-2

Total WW and WZ production cross section at 7 
and 8 TeV LHC  

Constraints from VV production
Fitting to following data:
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Figure 1.6: Feynman diagrams for the process e+e− → WWγ and WWZ at the Born level
involving quartic electroweak-gauge-boson vertices.

e+ ν
−

e
W

γ/Z
W+

e− e−

e+ e+

γ/Z

W
W−

e− νe

e+ ν
−

e
W

W
γ/Z

e− νe

Figure 1.7: Vector-boson fusion diagrams for the single W/Z/γ process at the Born level.
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√
s Single-W hadronic cross-section (pb)

(GeV) ALEPH DELPHI L3 LEP

182.7 0.44 + 0.29
− 0.24 0.11 + 0.31

− 0.14 0.58 + 0.23
− 0.20 0.42± 0.15

188.6 0.33 + 0.16
− 0.15 0.57 + 0.21

− 0.20 0.52 + 0.14
− 0.13 0.47± 0.09

191.6 0.52 + 0.52
− 0.40 0.30 + 0.48

− 0.31 0.84 + 0.44
− 0.37 0.56± 0.25

195.5 0.61 + 0.28
− 0.25 0.50 + 0.30

− 0.27 0.66 + 0.25
− 0.23 0.60± 0.14

199.5 1.06 + 0.30
− 0.27 0.57 + 0.28

− 0.26 0.37 + 0.22
− 0.20 0.65± 0.14

201.6 0.72 + 0.39
− 0.33 0.67 + 0.40

− 0.36 1.10 + 0.40
− 0.35 0.82± 0.20

204.9 0.34 + 0.24
− 0.21 0.99 + 0.33

− 0.31 0.42 + 0.25
− 0.21 0.54± 0.15

206.6 0.64 + 0.21
− 0.19 0.81 + 0.23

− 0.22 0.66 + 0.20
− 0.18 0.69± 0.12

Table 5.10: Single-W hadronic production cross-section from the LEP experiments and com-
bined values for the eight energies between 183 and 207 GeV, in the hadronic decay channel of
the W boson. The χ2/dof of the combined fit is 13.2/16.
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Figure 5.7: Measurements of the single-W production cross-section in the hadronic decay
channel of the W boson, compared to the predictions of WTO [198], WPHACT [195] and
grc4f [187]. The shaded area represents the ±5% uncertainty on the predictions.
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Total and differential WW production cross 
section at different energies of LEP-2

Single W production cross section at different 
energies of LEP-2

Total WW and WZ production cross section at 7 
and 8 TeV LHC  

Constraints from VV production

Observable ATLAS CMS SM

�LHC7
WW [pb] 51.9± 4.8 [17] 52.4± 5.1 [18] 44.7

�LHC8
WW [pb] 71.4± 5.6 [19] 69.9± 7.0 [20] 58.7

�LHC7
WZ [pb] 19.0± 1.7 [21] 20.8± 1.8 [22] 17.6

�LHC8
WZ [pb] 20.3± 1.6 [23] 24.6± 1.7 [22] 20.3

Table 4: Total WW and WZ cross sections at the LHC.

With the same procedure as previously I obtain

~c =

0

BBBBBBBBBBBBBB@

cWB

cT
c3W
c0HL

cHL

cHE

c0HQ

cHQ

cHU

cHD

1

CCCCCCCCCCCCCCA

, ~c0 =

0

BBBBBBBBBBBBBB@

4.1
0.04
13.2
3.9
�1.6
0.0
0.1
�1.7
0.0
�0.3

1

CCCCCCCCCCCCCCA

· 10�1, �~c =

0

BBBBBBBBBBBBBB@

2.6
0.32
4.5
0.8
0.3
0.6
0.1
0.8
0.4
0.2

1

CCCCCCCCCCCCCCA

· 10�1. (4.17)

The correlation matrix is

⇢ =

0

BBBBBBBBBBBBBB@

1. 0.77 0.58 �0.26 0.77 0.77 �0.27 �0.75 �0.75 0.67
· 1 �0.06 0.42 1 1 0.41 �0.98 �0.99 0.91
· · 1 �0.92 �0.07 �0.06 �0.92 0.07 0.08 �0.10
· · · 1 0.42 0.42 1 �0.41 �0.42 0.41
· · · · 1 1 0.42 �0.98 �0.99 0.90
· · · · · 1 0.41 �0.98 �0.99 0.90
· · · · · · 1 �0.41 �0.42 0.41
· · · · · · · 1 0.98 �0.87
· · · · · · · · 1 �0.90
· · · · · · · · · 1

1

CCCCCCCCCCCCCCA

.

(4.18)
As before, the parameters settle along the flat direction of the WZ pole fit. Strong
correlations remain, but some errors especially that on c3W , go down significantly. This
is due to the LHC cross section breaking the approximate flat direction of the LEP-2
WW fit. Amusingly, the fit shows a 3.3� preference for new physics (�2

SM � �2
min = 31.7

with 11 d.o.f.). LOL.
I again repeat the exercise of the simplified fit to the VV data, assuming the param-

eters are fixed at the WZ-pole flat direction. In the presence of anomalous TGCs the
total cross sections shift as

0

BB@

��LHC7
WW

��LHC8
WW

��LHC7
WZ

��LHC8
WZ

1

CCA ⇡

0

BB@

�6.2 �0.9 �1.6
�7.8 �1.0 �2.0
�10.1 �8.5 �1.7
�12.5 �10.6 �2.1

1

CCA ·
0

@
�g1,Z
��

��

1

A (4.19)
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Fitting to following data:



The limits are rather weak, in part due to an accidental flat 
direction of LEP-2 constraints along λz ≈ -δg1Z

This implies that the limits are sensitive to whether quadratic term 
in dimension-6 operator are included or not 

In other words, the limits can be affected by dimension-8 operators 
if c8∼c6^2  

Constraints from VV production
Comments

1405.1617

Central values and 1 sigma errors: 

http://arxiv.org/abs/arXiv:1405.1617
http://arxiv.org/abs/arXiv:1405.1617


One can include constraints from high 
pT tails of WW and WZ production at 
LHC (standard TGC probe)

However, one should remember these 
tails are dominated by quadratic 
terms in dimension-6 operators (or in 
aTGCs)

Thus limits obtained using these tails 
have implicit model-dependent 
assumption that dimension-8 
operators can be neglected, that is to 
say c8 << c6^2 

Constraints from LHC tails VV production



Combining LEP-2 and LHC constraints 
including tail one obtains better 95% CL 
limits on coefficients of  dimension-6 
operators

Constraints from LHC tails VV production



Another constraint on CP conserving higher 
derivative Higgs couplings to γγ, Zγ, ZZ and 
WW (effectively, 2 parameters for 4 
couplings)

Model independent constraint on custodial 
symmetry violation in Higgs sector: 
-0.04 < cw-cz < 0.16 at 95% CL 

has to rescale the Higgs boson field as h ! (1 � cH)h . After the rescaling, the

Lagrangian describing the single Higgs boson couplings to two SM particles has the

form

Lh = Lh,g + Lh,f . (3.21)

The first term stands for couplings to the SM gauge bosons,

Lh,g =
h

v

�
2cwm

2
WW+

µ W�
µ + czm

2
ZZµZµ

+
g2s
4
cggG

a
µ⌫G

a
µ⌫ �

g2L
2
cwwW

+
µ⌫W

�
µ⌫ �

e2

4
c��Aµ⌫Aµ⌫ � g2L

4 cos2 ✓W
czzZµ⌫Zµ⌫ � egL

2 cos ✓W
cz�Aµ⌫Zµ⌫

+
g2s
4
c̃ggG

a
µ⌫G̃

a
µ⌫ �

g2L
2
c̃wwW

+
µ⌫W̃

�
µ⌫ �

e2

4
c̃��Aµ⌫Ãµ⌫ � g2L

4 cos2 ✓W
c̃zzZµ⌫Z̃µ⌫ � egL

2 cos ✓W
c̃z�Aµ⌫Z̃µ⌫

�
,

(3.22)

The dictionary between these couplings and the parameters in the dimension 6

Lagrangian Eq. (3.2) is the following:

cw = 1� cH ,

cz = 1� cH � cT ,

cgg = 4cGG,

c�� = �4 (cWW � cWB + cBB) ,

cz� = � 2

g2L + g2Y

�
2g2LcWW � (g2L � g2Y )cWB � 2g2Y cBB

�
,

czz = � 4

(g2L + g2Y )
2

�
g4LcWW + 2g2Lg

2
Y cWB + g4Y cBB

�
,

cww = �4cWW . (3.23)

Note that 7 Higgs couplings map to only 6 parameters of the dimension 6 Lagrangians

One finds that couplings satisfy the following relation:

cww = czz +
2g2Y cz�
g2L + g2Y

+
g4Y

(g2L + g2Y )
2
c��. (3.24)
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Consequences for Higgs physics

4



Summary

Effective field theory approach allows one, 
under certain general assumptions,  to study 
BSM physics in a model independent way

EFT is a convenient tool to combine 
constraints on new physics from Higgs data 
and other precision measurements

In case deviations from SM are seen,  EFT 
predicts correlations between different 
observables that can be tested 


