Fast Luminosity Monitoring Using Diamond Sensors For The Super Luminous Flavor Factory SuperKEKB

Dima El Khechen Cécile Rimbault Philip Bambade Viacheslav Kubytskyi Didier Jehanno

Comprendre le monde, construire l'avenir®

Outline

- SuperKEKB: Definition and Status
- Fast luminosity monitoring:
- Sensor location in LER
- Geometry of the vacuum chamber
- ✓ HER
- Readout and electronics
- Conclusion & Next Plans

SuperKEKB

- Belle II @ SuperKEKB: e+e- collider (e+ @ 4 GeV (LER) & e- @ 7 GeV (HER))
- High Luminosity (8 10³⁵ cm⁻² s⁻¹)
- Nano-beam scheme, very small beam sizes (60 nm)
- → High currents (beams collide @ 0.25 GHz)

Fast Luminosity Monitoring

- Fast luminosity monitoring is required in the presence of dynamical imperfections, for feedback and optimization.
- Precision $\delta \perp / \perp = 10^{-3}$ in 1 ms
- Lumi monitoring for each bunch crossing: 2500 bunches, collide each 4 ns
- Measurement: Radiative Bhabha process at zero photon scattering angle , Large cross-section ~ 0.2 barn
- Technologies: Sensors set immediately outside beam pipe
 - 5x5 mm² diamond sensors -Scintillator + (Radiation hardness, Fast charge collection)

ZDLM group at KEK, S.Uehara San

-Scintillator + Cherenkov detector

Sensor Location in LER

Bhabha dynamics have been generated by GUINEA-PIG++

- Low energy e+/e- will be deflected downstream of the IP
- Exiting Bhabha rates are studied using SAD tracking code

E(Gev)

Sensor Location in LER

• To reach the aimed precisions, the following counting rates are required:

Luminosity (cm ⁻² s ⁻¹)	Aimed precision (in 1 ms)	Required fraction
10 ³⁴	10-2	2.1 x 10 ⁻³
8 10 ³⁵	10-3	2.6 x 10 ⁻³

- The best candidate position is chosen to be at 13.9 meters from the IP:
- 3 meters drift , adequate to place our sensors
- 4.7% of Bhabha positrons will exit the 6 mm thick copper beam-pipe

Energy Deposition of e+/e- in a 100um Diamond

 Charged particles like e⁺ and e⁻ will deposit energy in the diamond sensor according to a "Landau" distribution

Geometry of Vacuum Chamber

Bhabha positrons escape the beam pipe at an average angle of 5 mrad

The particle will cross 1.2 meters in the copper ~ 80 radiation lengths

Absorption of shower particles in the beam-pipe

Modification of the beam pipe is suggested to increase the probability of having exiting showers
A window at 45 degrees is suggested

A Summary Table of collected secondaries

	Luminosity (cm ⁻¹ s ⁻¹)	Required Precision in 1 ms (Nb of particles)	Number of particles collected in 1 ms	Number of particles per bunch crossing
No window	10 ³⁴	10 ⁻² (> 10 ⁴ part)	1.4 10 ²	0.00056
No window	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	1.3 104	0.052
Window	10 ³⁴	10 ⁻² (> 10 ⁴ part)	4.4 10 ³	0.0176
Window	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	3.5 10 ⁵	1.4
Window+Radiator	10 ³⁴	10 ⁻² (> 10 ⁴ part)	1.5 10 ⁴	0.06
Window+Radiator	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	1.2 10 ⁶	4.8

GEANT4 Simulation Results

• Geant4 simulations were performed, considering the material and the beam pipe geometry, to estimate the actual signals in the sensors

GEANT4 Simulation Results

• Advantage of having a window at 45 degrees is the possibility of placing a radiator at shower max to improve the signal in the sensor.

BUT such window may be costly and may introduce wakefields thus affecting the beam stability .. A new design is under discussion, it consists of a thinner beam pipe in the drift chosen to put our diamond sensors

Study Of HER

- Unlike LER, the HER showed non-linear distributions in the x-E plane, mainly due to chromaticity corrections, in addition to very low Bhabha rates
- No candidate place for our sensor is yet considered
- Search for a candidate place will be on going as an internship work subject by Oleg Shkola, National University of "Kiev-Mohyla academy"

Diamond Sensors

- Diamond sensor technology already exists at LAL since 2012 for Beam-halo study at ATF2 (prototype of ILC final focus) (Presentation of Viacheslav Kubytskyi)
- For SuperKEKB: signal width <1-2 ns, since bunch spacing is 4 ns
- Charge amplifier : $\sigma = 10 \text{ ns}$ (shaping time)

enough for phase 1 (average

Minimum Signal Detection

Readout

FPGA-based digital acquisition

- Synchronized to acc. RF Clock @ 10MHz
- Sampling every 1ns
- Phase adjustment by the ADC board
- Peak value acquisition : determines Bhabha events nb
- 2015 : signal FWHM 10ns (140μm diamond thickness)
- 2016 : signal FWHM ~2ns (100μm diamond thickness)

Outputs

- Train Integrated Luminosity over 1ms
- Bunch Integrated Lumi over 1ms : 2500 values @254 MHz

Slow Control / Interface

- Sampling controlled by local Linux machine (LM) connected to FPGA board
- TIL and BIL directly computed by FPGA and read by LM
- EPICS protocol installed on LM and provides TIL + BIL to EPICS users in real time (1ms)
- DAQ also comes with 4 Analog outputs Controlled by EPICS users Used for tests, debug and orbit feedback

Conclusions & Next Plans

- Fast Luminosity monitoring is very important for a feedback system and for optimization
- Optimal position of the sensor is to be at 13.9 meters from the IP in the LER For the HER, to be studied in the coming two months
- Simulations in Geant4, results in the necessity of having a window to increase our signals in the diamond
- A deep study of the design of a new vacuum chamber is taking place, using GEANT4
- Fast readout and electronics are under development to be able to monitor bunch by bunch luminosity
- Characterization tests of the 140 $\,\mu\text{m}$, 4x4 mm² diamond sensor with the fast 10 ns charge amplifier using α and β sources will take place in the clean room at LAL
- Due to delayed schedule, no beam-beam collision will take place during my thesis — A simulation study and measurements of the Bremsstrahlung process will take place in the context of background estimations
- Installation of the whole set-up will take place at KEK with the start of single beam commissioning at the end of 2015

THANK YOU !!!