

STUDIES OF MPPC DETECTORS DOWN TO CRYOGENIC TEMPERATURES

<u>Andrii Nagai¹</u>, Nicoleta Dinu¹, Adam Para²

¹ Laboratory of Linear Accelerator, Orsay France ² Fermi National Accelerator Laboratory, Illinois, USA

Outline

• Introduction:

- \checkmark Photo-detection silicon detectors
- ✓ What is MPPC?
- \checkmark The motivation of the present work
- Experimental details
- Main steps of automatic procedure for data analysis:
 - \checkmark Baseline restoration
 - ✓ Templates
 - ✓ Peak analysis
- Physics results:
 - \checkmark Charge and Amplitude distribution
 - ✓ Gain and Breakdown Voltage
 - ✓ Micro-cell resistance and capacitance
 - ✓ Dark Count Rate
 - \checkmark Rise time and recovery time
- Summary

What is a MPPC?

Parallel array of μ -cells on the same substrate

• each μ -cell: GM-APD in series with R_q

01/10/2014

MPPC detectors

Advantages:

- High gain $(10^5 10^6)$ with low voltage (<100V)
- Low power consumption ($<50\mu$ W/mm²)
- Fast (timing resolution ~50 ps RMS for single photon)
- Insensitive to magnetic field (tested up to 7 T)
- High photon detection efficiency (30-40% blue-green)
- Compact and light

Possible drawbacks:

- High dark count rate (DCR) at room temperature
 - $10 \text{kHz/mm}^2 1 \text{MHz/mm}^2$
 - thermal carriers, crosstalk, afterpulses
- Temperature dependence
 - Gain, V_{BD} , signal shape, R_q , DCR, PDE

Work motivation:

Temperature:

- affects the characteristics of the MPPC detectors
 - breakdown voltage, signal shape, noise, gain, photon detection efficiency etc
- leads to a variation of the final detection characteristics

Experimental set-up

Measurements conditions

- T from -175°C to 55°C in step of 10°C (24 T values)
- at each T:
 - •12 V_{bias} values for each detector (the same overvoltage independent of T)

MPPC detectors Hamamatsu S10362-11-050U

1x1mm² total area 50x50μm² μcell

Hamamatsu S10931-050P

3x3mm² total area 50x50μm² μcell

Automatic procedure for calculation of MPPC parameters

Huge amount of experimental data

- 24 values of T
- 12 values of V_{bias} for each T
- 5000 waveforms per V_{bias}
- leading to $1.44 \cdot 10^6$ waveforms per detector

Main steps of automatic procedure based on ROOT analysis framework:

1. Baseline restauration

• Restore the zero baseline

2. Template creation

- MPPC signal shape is independent of V_{bias}
- Calculate typical MPPC signal shape at a given T

3. Pulse finding procedure

Separate MPPC pulses from high frequency electronic noise

4. Template subtraction

Reconstruct MPPC pulses in a train of pulses

5. Pulse characteristics

• Calculate MPPC pulse characteristics

1. Baseline restoration:

Read-out chain used for data acquisition

differentiates the signal with the time constant τ

it leads to baseline shift:

- Pulses are siting on shifted baseline
- Pulse shapes are modified (Amplitude, Charge, Trailing edge...)

Waveform, Voltage : 72.08 V. Temperature : 55 C⁰

Using such method MPPC charge (Gain) calculation was improved

2. Template creation

• Calculate a typical normalized MPPC signal shape at a given T

3. Pulse finding procedure

• Comparing the template with all pulses we can choose for the analysis only the pulses having the same shape (real MPPC shape)

4. Template subtraction procedure

Reconstruct MPPC pulses within a train of pulses

5. Pulse analysis

All calculated parameters saved in Ntuple files (one file at a given T and V_{Bias})

- Baseline
- Riser time
- Decay time
- Charge
- Local minimum (time, amplitude)

MPPC characteristics

Gain

- number of charges created in one avalanche

$$Gain = \frac{Q_{cell}}{e} = \frac{C_{cell} \times (V_{bias} - V_{BD})}{e} = \frac{C_{cell} \times \Delta V}{e}$$

Breakdown voltage

- Linear fit of G vs V_{bias} intercepts of x axis

C_{µcell} - slope of linear fit

01/07/2014

Gain vs V_{bias} and T

Breakdown voltage vs T

Detectors show different temperature dependence

different structural or technological characteristics (C.R.Crowell and S.M.Sze "Temperature dependence of avalanche multiplication in semiconductors", Appl. Phys. Letters 9, 6(1966))

Gain vs ΔV and T

13

Signal shapes vs T

Dark count rate vs T

Andrii Nagai, LAL

Summary

- MPPC detectors of 1x1 and 3x3 mm² 50x50µm cell size
 - T range -175° C to $+55^{\circ}$ C
 - overvoltage range: 0.5 to 2.5V
- Automatic procedure for calculation of the MPPC parameters
 - baseline restoration
 - pulses characteristics analysis
- T dependence of MPPC parameters
 - breakdown voltage
 - gain
 - dark count rate
 - quenching resistance
 - micro-cell capacitance
 - recovery time

• Future work

- automatic procedure
 - \succ to be used for the analysis of new detectors from different producers
 - \succ select detectors with best characteristics (noise, T stability) for intra-operative beta probes
- continue the analysis of MPPC characteristics vs T
 - > PDE
 - ➤ afterpulses and cross-talk

Additional slides

MPPC characteristics:

Gain : \rightarrow the number of charges created in one avalanche in one µcell the junction) Noise : - dark count afterpulse optical cross-talk avalanche

pulses triggered by non-photo-generated carriers (thermal/tunneling generation in the bulk or in the surface depleted region around

carriers can be trapped during an avalanche and then released triggering another

photo-generation during the avalanche discharge. Some of the photons can be absorbed in the adjacent cell possibly triggering new discharges

Signal shape :- $\begin{bmatrix} \text{Rise time: } \tau_{rise} \sim R_D \cdot C_D \text{ (read-out chain should be taken into account)} \\ \text{Recovery time: } \tau_{recovery} \sim R_q \cdot C_D \text{ (influence the dead time and dynamic range)} \end{bmatrix}$

Photon Detection Efficiency, Dynamic Range, Timing resolution

Motivation:

- The temperature and bias voltage represent two parameters affecting the characteristics of the MPPC detectors (breakdown voltage, signal shape, noise, gain etc) and consequently leading to a variation of the final detection characteristics
- Use the properties of MPPC for the understanding of fundamental physics: temperature dependence of thermal generated carriers; life time of afterpulses etc.

Set-up for new SiPM's measurements as a function of temperature :

Voltage source Pulse generator

Oscilloscope (500Mhz)

Pt100 & multimeter for T monitoring

Climatic chamber

Board for SiPM measurements:

Main characteristics of the board:

- Gali amplifier (G=20dB, BW=2GHz)
- DC and AC measurements of single SiPM
- AC measurements of arrays of SiPM from SIPMED modules

Board design: N. Dinu, T. Imando, A. Nagai, D. Breton Routing: Jean-Luc Socha Mechanics: JF. Vagnucci Cabling: P. Favre, B. Debennerot, F. Campos

Silicon detectors

p-n junction working in reverse bias mode

Andrii Nagai, LAL

 $V_{Bd}/V_{Bd}(300^{0}K)$ Vs. Temperature

Waveform, Voltage : 72.28 V. Temperature : 55 C⁰

Pulse analysis

All calculated parameters saved in Ntuple files (one file at a given T and V_{Bias})

- Baseline
- Riser time
- Decay time
- Charge
- Local minimum (time, amplitude)

