

ELI-NP-GBS

Extreme Light Infrastructure – Nuclear Physics – Gamma Beam Source

The 3 ELI's pillars

ELI-Beamlines

In Czech Republic: Ultra-short and intense beams for interdisciplinary applications.

In Romania: Photonuclear physics from intense gamma-source and high-power laser beams.

ELI-Attosecond

In Hungary: physics of ultra-short laser pulses in attosecond order.

ELI-NP

Production of the gamma-beam

- Compton Scattering
 - Gamma-ray production

- Collimation
 - Energies selection

$$E_e = 50 \text{ MeV}$$

 $E_{\gamma} \simeq E_L \frac{4\gamma^2}{1+\gamma^2\theta^2 + \frac{\phi^2}{4}}$

Accelerator configuration

Gamma-beam specifications:

- Energies γ (E_v) : 0.2 19.5 MeV
- Bandwidth ($\Delta E/E$) : <0.5%
- Spectral density (flux) : >5000 $\gamma/(s.eV)$
- Linear polarization: >95%

Overview design

2 interaction points :

- 1 lasers 200mJ Yb@515nm (3.5ps) per interaction point (combined for the second: 400mJ)
- Hybrid LINAC bands S and C (~100 720 MeV)

Optical system: laser beam circulator

Circulator principle

- 2 high-grade quality parabolic mirrors
 - Aberration free
- Mirror-pair system (MPS) per pass
 - Synchronization
 - Optical plan switching
 - \Rightarrow Constant incident angle = small bandwidth

Amplitude

Nothing but ultraffst.

2.4 m

French-Ukrainian workshop 2014 - Kevin Dupraz

Free parameters = to be optimized on the gamma-ray flux

- \Box Angle of incidence (Φ)
- Laser power = state of the art
- \Box Waist size (ω_0)
- Number of passes
 - \Rightarrow 32 passes, $\phi = 7.54^{\circ}$

02/10/2014

30 cm

e

 (M_1)

 (M_2)

ALSY

Circulator constraints

- 8
- Mirror surface quality (Code V)
- Frozen geometry (parabolic mirrors distance)

=> Tight alignment (few μm, μrad) with 7 degrees of freedom (see later)

- □ MPS parallelism (< 3 µrad)</p>
- □ Synchronization (few 100fs)

Optical Quality (in progress)

Surface deformations

- Simulated with proven method (same as Virgo)
- Parabolic mirrors deformations $< \lambda/80$ RMS
- MPS mirrors
- Difficult to relate surface quality to gamma-ray flux

Good $\overline{\square}$ 0.050

x [mm]

IP beam profile

System with nonlinear behavior
 => everything have to be
 simulated

Good

Alignement

Expected performances

- Relative flux (>95%)
- Simulation of the alignment algorithm
 => Flux maximization
- \Box Circulator gain VS simple pass (loss from mirror surface not taken into account) \approx 30

Synchronization tool

Optical Recirculator

Synchronization (Proof of principle)

Synchronization online

14

Diamond detector

Located in the gamma beam line before collimation

=> Synergy with superkekB

French-Ukrainian workshop 2014 - Kevin Dupraz 02/10/2014

Cheikh Ndiaye

Outlook

- New optical system under development:
 - LAL: design and tool development
 - ALSYOM: opto-mechanics
 - AMPLITUDE: lasers
- Laser Beam Circulator is not as easy as it was thought (challenging optics)
- Required performances reachable
 - **Flux** > $5000\gamma/(s.eV)$
 - Degree of polarization > 99%
 - Bandwidth < 0.5%

Prototype delivery date: June 2015

Polarisation

17

- Simulation with multilayer coatings and coating birefringence
- Polarization preserved during circulation (>99%)
 - Linear
 - Circular

Optimization No. passes

French-Ukrainian workshop 2014 - Kevin Dupraz 02/10/2014

MPS parallelism

19

French-Ukrainian workshop 2014 - Kevin Dupraz 02/10/2014

Alignment

