Laser applications at accelerators

Viktor Soskov, LAL

Principal laser applications

I. Particales generation (photoinjector)

laser of UV range, energy ~100µJ, pulsewidth up to 10fsec make possible to generate very short bunch with a small emittance

II. Particales acceleration

laser of the extreme intensity 10¹⁸ -10²⁰W/cm² allow to reach a high-gradient acceleration ~1GV/m

III. Laser application for particle beams monitoring and X- γ photons generation.

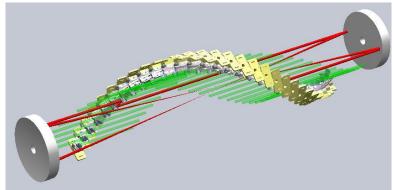
particularity: small cross-section -> high energy laser pulses are needed -> laser energy losses is very small->

laser pulse may be used many times -> recycling or optical cavity

Direct laser beam – particles interaction with recycling

Extreme Light Infrastructure – Nuclear Physics

ELI – NP project


Electron beam parameters

Laser parameters

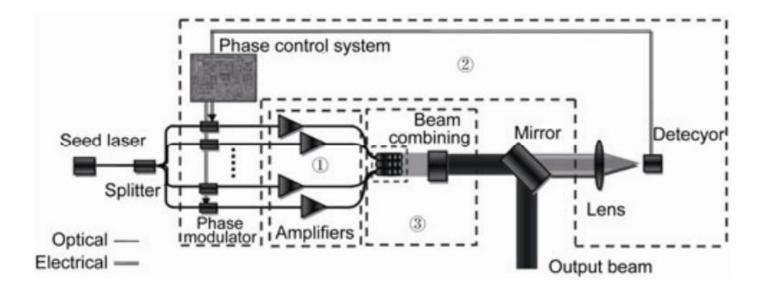
Energy	80-720 MeV	Puls
Bunch charge	25-400 pC	Rep.
Bunch length	100-400 μm	Wav
ε _{n_x,y}	0,2-0,4 mm-Rad	Pulse
Sport size	>15 µm	i aist
Bunch separation	16 nsec	Jitte
Bunches in train	≤32	

Recirculator allows of one laser pulse Interaction with 32electron bunches

Pulse energy	200mJ
Rep.rate	100Hz
Wavelength	515nm
Pulsewidth(FWHM)	3,5psec
Jitter to external clock	< 200fsec

Table 1. Summary of Gamma-ray beam Specifications

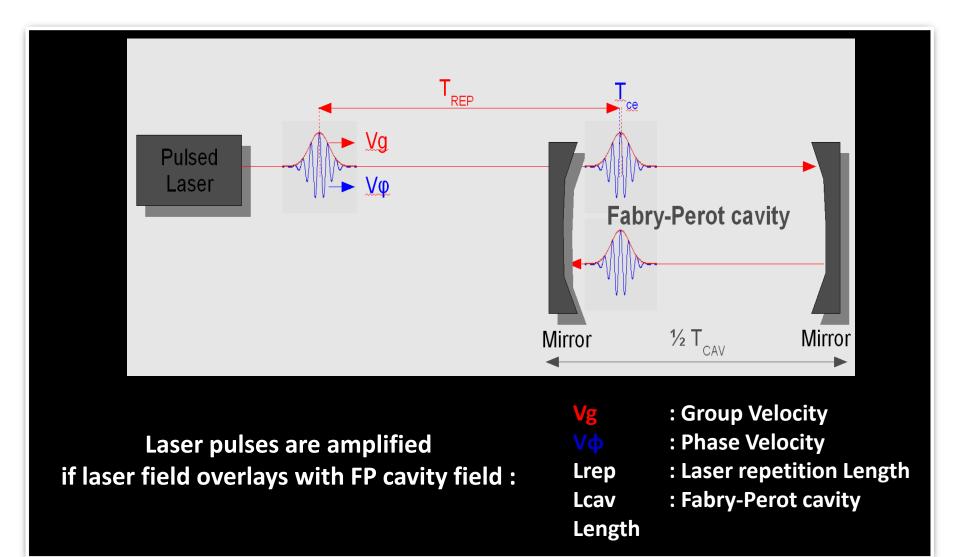
Photon energy	0.2-19.5 <i>MeV</i>
Spectral Density	0.8-4 ⁻ 10 ⁴ ph/sec.eV
Bandwidth (rms)	≤ 0.5%
# photons per shot within FWHM bdw.	≤ 2.6 ⁻ 10 ⁵
# photons/sec within FWHM bdw.	≤ 8.3 ⁻ 10 ⁸
Source rms size	10 - 30 μm
Source rms divergence	25 - 200 <i>μrad</i>
Peak Brilliance (Nph/sec mm ² mrad ² 0.1%)	10 ²⁰ - 10 ²³
Radiation pulse length (rms, psec)	0.7 - 1.5
Linear Polarization	> 99 %
Macro rep. rate	100 <i>Hz</i>
# of pulses per macropulse	≤ 32
Pulse-to-pulse separation	16 <i>nsec</i>


Coherent laser beam combining

Use a high coherence of the laser beam to

- 1. combine several coherent laser beams into one power beam
- 2. accumulate (amplificate) a laser beam inside a passive optical cavity

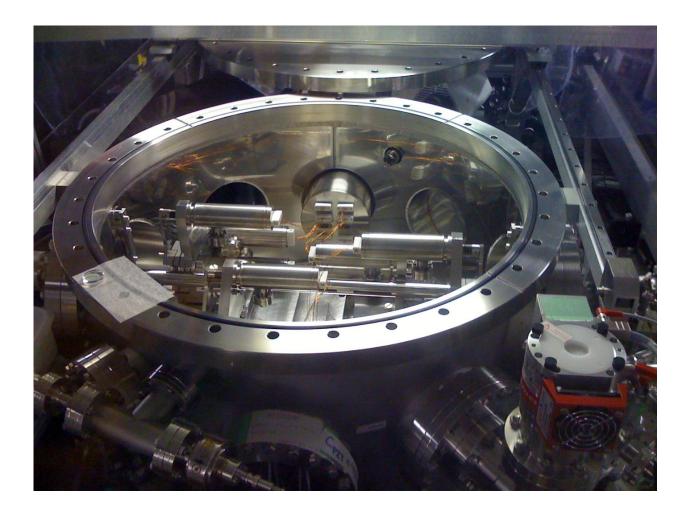
Principle of coherent beams combining


Several coherent laser beams are synchronized and combined in one power beam

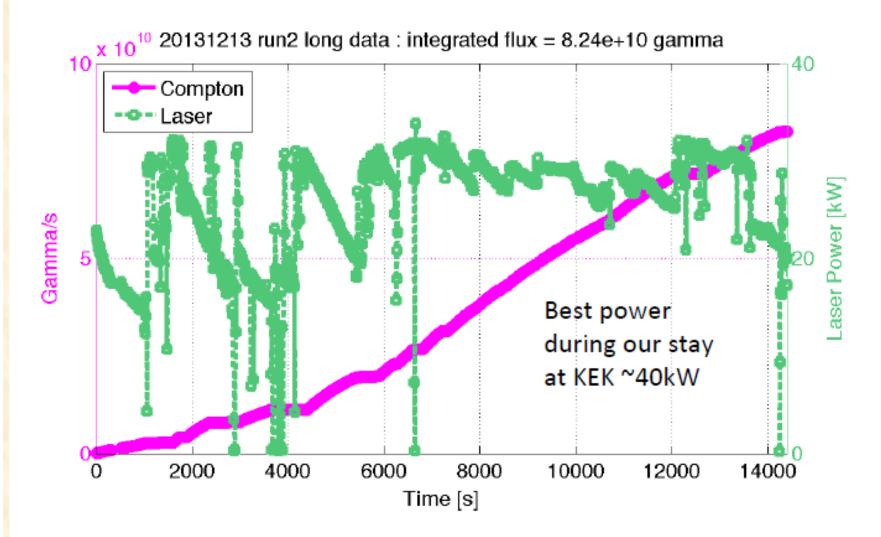
Combined power 1-1,5 kW for 10-15 fiber laser beams

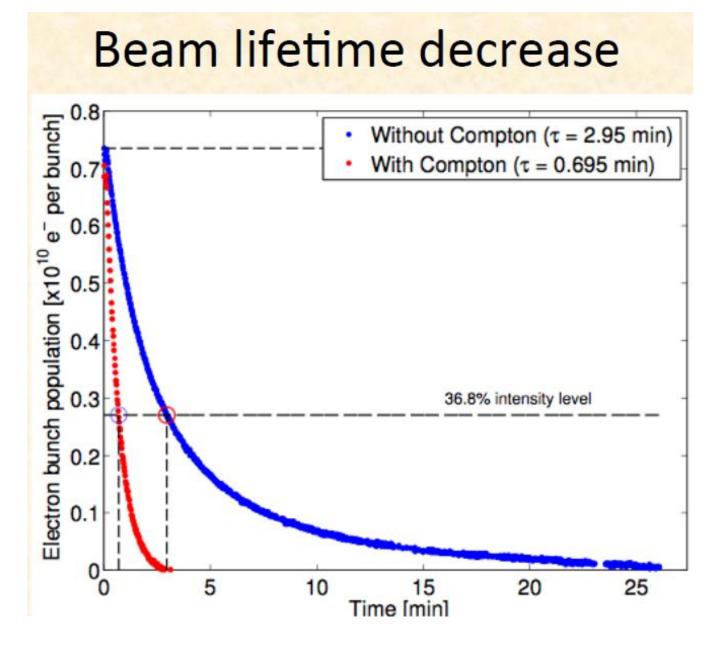
Drawback: beam quality

Pulsed laser amplifying principle in time domain



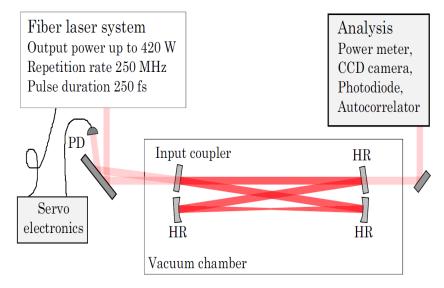
MightyLaser setup at ATF (KEK)


All fiber laser: Oscillator: Orange (Menlo-Systems), λ =1030nm, $\Delta\lambda$ =9.6nm, τ =2.5ps, F_{rep} =178.5MHz, P_{out} =23mW Amplifier: CELIA (Bordeaux) P_{out} =50W


Optical cavity (MightyLaser, ATF,KEK)

Nonplanar 4-mirrors optical cavity LAL(Orsay)

Long run with high power


Limitation owing to particels losses

Megawatt-scale average-power ultrashort pulses in an enhancement cavity

H. Carstens, N. Lilienfein, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, J. Weitenberg, D. C. Yost, A. Alghamdi, Z. Alahmed, A. Azzeer, A. Apolonski, E. Fill F. Krausz, and I. Pupeza

Was demonstrate 400 kW of average power with 250 fs pulses and 670 kW with 10 ps pulses at a central wavelength of 1040 nm and a repetition rate of 250 MHz.

Input: 420W fiber laser

Limitation owing to thermal deformation of cavity mirrors

X rays Accelerating Section Bunch 1 nC So-70 MeV								
Interaction Point Storage Ring 16.8 m, 17.8 MHz								
Å				Ring	50 MeV (70 MeV possible)			
i	T 150			Energy Circumference	16.8 m			
	Laser and FP ca	-		Crossing-Angle (full)	2 degrees			
	Laser wavelengt		1030 nm	β _{xy} @ IP	0.1 m			
Laser			35.68 MHz	$r_{xy} \otimes H$ r_{xy} just after injection	5.10 ⁻⁸ m			
	Laser power		50 – 100 W	Bunch length just after injection (rms)	4 ps			
	Laser pulse energ		1.4 – 2.8 μJ	Bunch length at the end of a 20 ms storage	50 ps (rms)			
	Fabry-Perot puls		28 mJ	cycle	Joha (ima)			
	Fabry-Perot pulse length (rms) FP cavity finesse/Gain FP waist Power circulating in the FP cavity		5 ps	Beam current	17.84 mA			
			3000-30000 /	RF frequency	500 MHz			
			70 µm	Transverse/longitudinal damping time	1 s /0.5 s			
			~ 0.07 - 0.7 1	RF Voltage	300 kV			
Source				Revolution frequency	17.84 MHz			
Photon ene	Photon energy cut-off 46 keV (@50 MeV), 90 keV (@ 70 1), 70 MeV)	$\sigma_x (a)$ IP (just after injection)	70 µm			
Total Flux	Total Flux 10 ¹¹ -10 ¹³ photon/s			Tune x/y	3.17 /1.74			
Bandwidth	Bandwidth (with diaphragm) 1 % - 10%			Momentum compaction factor α_c	0.0136			
Divergenc	Divergence 10 mrad (1/γ) without diaphragm @ 50 MeV		m @ 50 MeV	Initial/Final relative energy spread (with IBS and Compton back-scattering)	0.4%/0/6%			