Introduction to the HEPML workshop and the HiggsML challenge

BALÁZS KÉGL DAVID ROUSSEAU, CÉCILE GERMAIN, ISABELLE GUYON, GLEN COWAN

CNRS/IN2P3/University Paris-S{ud,aclay}, ChaLearn, Royal Holloway

HEPML NIPS'14 workshop December 13, 2014

CLASSIFICATION FOR DISCOVERY THE HIGGSML CHALLENGE

Data collection

THE LHC IN GENEVA

THE ATLAS DETECTOR

THE ATLAS DETECTOR

THE ATLAS DETECTOR

DATA COLLECTION

- Hundreds of millions of proton-proton collisions per second
- Filtered down to 400 events per second
 - still petabytes per year
 - real-time (budgeted) classification: trigger
 - a research theme on its own

Feature engineering

FEATURE ENGINEERING

- Each collision is an event
 - hundreds of particles: decay products
 - hundreds of thousands of sensors (but sparse)
 - · for each particle: type, energy, direction is measured
 - a fixed-length list of ~30-40 extracted features: x
 - e.g., angles, energies, directions, reconstructed mass
 - based on 50 years of accumulated domain knowledge

THE HIGGS TO TAU-TAU CHANNEL

- Highly unbalanced data
 - we expect to see < 100 Higgs bosons per year in $\approx 10^{10}$ events
 - after pre-selection, we will have
 500K background (negative) and
 IK signal (positive) events per year (2012)
 - Training on simulated data

The metric

Goal: optimize the expected discovery significance

- A two-stage approach
 - 1. optimize a discriminant (score) function $f: \mathbb{R}^d \to \mathbb{R}$ using a classical learning algorithm (BDT, NN)

- A two-stage approach
 - 1. optimize a discriminant (score) function $f: \mathbb{R}^d \to \mathbb{R}$ using a classical learning algorithm (BDT, NN)

- A two-stage approach
 - 1. optimize a discriminant (score) function $f: \mathbb{R}^d \to \mathbb{R}$ using a classical learning algorithm (BDT, NN)

- A two-stage approach (make figure with score)
 - 1. optimize a discriminant (score) function $f: \mathbb{R}^d \to \mathbb{R}$ using a classical learning algorithm (BDT, NN)
 - 2. define $g(\mathbf{x}) = \operatorname{sign}(f(\mathbf{x}) \theta)$ and optimize θ for maximizing the AMS

How to handle systematic (model) uncertainties?

- OK, so let's design an objective function that can take background systematics into consideration
 - Likelihood with unknown background $b \sim \mathcal{N}(\mu_b, \sigma_b)$

$$L(\mu_{\rm S}, \mu_{\rm b}) = P(n, b | \mu_{\rm S}, \mu_{\rm b}, \sigma_{\rm b}) = \frac{(\mu_{\rm S} + \mu_{\rm b})^n}{n!} e^{-(\mu_{\rm S} + \mu_{\rm b})} \frac{1}{\sqrt{2} \tau \sigma_{\rm b}} e^{-(b - \mu_{\rm b})^2 (2\sigma_{\rm b})^2}$$

- Profile likelihood ratio $\lambda(0) = \frac{L(0,\hat{\mu}_{\mathrm{b}})}{L(\hat{\mu}_{\mathrm{s}},\hat{\mu}_{\mathrm{b}})}$
- The new Approximate Median Significance (by Glen Cowan)

AMS =
$$\sqrt{2\left((s+b)\ln\frac{s+b}{b_0} - s - b + b_0\right) + \frac{(b-b_0)^2}{\sigma_b^2}}$$

where

$$b_0 = \frac{1}{2} \left(b - \sigma_b^2 + \sqrt{(b - \sigma_b^2)^2 + 4(s + 1)\sigma_b^2} \right)$$

How to handle systematic (model) uncertainties?

The new Approximate Median Significance

AMS =
$$\sqrt{2\left((s+b)\ln\frac{s+b}{b_0} - s - b + b_0\right) + \frac{(b-b_0)^2}{\sigma_b^2}}$$

where

$$b_0 = \frac{1}{2} \left(b - \sigma_b^2 + \sqrt{(b - \sigma_b^2)^2 + 4(s + b)\sigma_b^2} \right)$$

Exciting physics

• The Higgs to tau-tau excess is not yet at five sigma Tech. Rep. ATLAS-CONF-2013-108

Exciting data science

- What is the theoretical relationship between classification and test sensitivity?
- What is the quantitative criteria to optimize?
- How to formally include systematic uncertainties?
- · How to design (or redesign classical) algorithms for optimizing the criteria?
- Redesign the counting test?

We organized a data challenge to answer some of these questions

- Organizing committee
 - David Rousseau (ATLAS / LAL)
 - Balázs Kégl (AppStat / LAL)
 - Cécile Germain (LRI / UPSud)
 - Glen Cowan (ATLAS / Royal Holloway)
 - Claire Adam Bourdarios (ATLAS / LAL)
 - Isabelle Guyon (ChaLearn)

- I6K\$ prize pool
 - 7-4-2K\$ for the top three
 - HEP meets ML award for the most useful model, decided by the ATLAS members of the organizing committee

- Official ATLAS GEANT4 simulations
 - 30 features (variables)
 - 250K training: input, label, weight
 - 100K public test (AMS displayed realtime), only input
 - 450K private test (to determine the winner after the closing of the challenge), only input
 - public and private tests are shuffled, participants submit a vector of 550K labels

Completed • \$13,000 1,785 teams
Higgs Boson Machine Learning Challenge

Mon 12 May 2014 - Mon 15 Sep 2014 (21 days ago)

Dashboard

Private Leaderboard - Higgs Boson Machine Learning Challenge

This competition has completed. This leaderboard reflects the final standings.

See someone using multiple accounts? Let us know.

#	Δ1w	Team Name ‡ model uploaded * in the money	Score ②	Entries	Last Submission UTC (Best – Last Submission)
1	↑4	Gábor Melis ‡ *	3.80581	110	Sun, 14 Sep 2014 09:10:04 (-0h)
2	‡1	Tim Salimans ‡ *	3.78913	57	Mon, 15 Sep 2014 23:49:02 (-40.6d)
3	_	nhlx5haze ‡ *	3.78682	254	Mon, 15 Sep 2014 16:50:01 (-76.3d)

1 †4 Gábor Melis ‡ * 2		3.80581	1 0 57	Sun, 14 Sep 2014 09:10:04 (-0h) Mon, 15 Sep 2014 23:49:02 (-40.6d)
 3 — nhlx5haze ‡ * 4 ↑55 ChoKo Team ♣ 5 ↑23 cheng chen 6 ↓2 quantify 		2.70602	57	Mon, 15 Sep 2014 23:49:02 (-40.6d)
4 155 ChoKo Team 1 5 123 cheng chen 6 12 quantify		2.70002		
5 †23 cheng chen 6		3.78682	254	Mon, 15 Sep 2014 16:50:01 (-76.3d)
6 12 quantify		3.77526	216	Mon, 15 Sep 2014 15:21:36 (-42.1h)
		3.77384	21	Mon, 15 Sep 2014 23:29:29 (-0h)
7 † 73 Stanislav Semeno		3.77086	8	Mon, 15 Sep 2014 16:12:48 (-7.3h)
	v & Co (HSE Yandex)	3.76211	68	Mon, 15 Sep 2014 20:19:03
8 11 Luboš Motl's team	1.1 ^E	3.76050	589	Mon, 15 Sep 2014 08:38:49 (-1.6h)
9 I1 Roberto-UCIIIM		3.75864	292	Mon, 15 Sep 2014 23:44:42 (-44d)
10 ↑5 Davut & Josef 🎩		3.75838	161	Mon, 15 Sep 2014 23:24:32 (-4.5d)
990 165 sandy		3.20546	5	Fri, 29 Aug 2014 18:14:30 (-0.7h)
991 165 Rem.			2	Mon, 16 Jun 2014 21:53:43 (-30.4h)
simple TMVA boo	sted trees	3.19956		
992 165 Xiaohu SUN		511550	3	Tue, 03 Jun 2014 13:14:47
993 L65 Pierre Boutaud				

ARE THE WINNING SCORES SIGNIFICANTLY DIFFERENT?

ARE THE WINNING SCORES SIGNIFICANTLY DIFFERENT?

pvalue for the Wilcoxon rank sum stat (equal median).Identicalsampling 9 first competitors

- 18 months to organize it
- 4 months to run it
- ?? months to transfer to **HEP** what we learned

WHAT HAVE WE LEARNED SO FAR?

- Neural nets (dropout, RLU, etc.) rule (although no slam dunk)
- Ensemble methods (random forest, boosting) rule
- Meta-ensembles of diverse models rule
- 800K points is small for this task: careful cross-validation rules

800K IS A SMALL?

- We asked participants to find good classifiers (in "smooth" AUC sense) but also to come up with the best selection threshold
- Optimal region contains about ~15% of the points
- Standard deviation of AMS (given the classifier and the threshold) is about 0.04 (0.08 on the public leaderboard)

800K IS A SMALL?

Find the maximum of a noisy diffusion-like process

META

- A data challenge is a great way to
 - generate visibility
 - human resources
 - optimize a tiny segment of the complete workflow
- Limitations
 - technical constraints (e.g., no server-side execution)
 - sociological constraints (should not be too far from an off-the-shelf problem)
 - emphasizes competition instead of collaboration

DATA WILL BE AVAILABLE SOON

http://opendata.cern.ch/education/ATLAS

ML IN HIGH-ENERGY PHYSICS

- Budgeted classification for online triggers
- Maximizing the discovery significance and other exotic metrics
- Deep learning for getting closer to raw data
- How to be robust to systematic errors

HEPML workshop at NIPS14

Saturday 13 December 2014

Session 1 - Level 5, room 511 c (08:30-10:00)

time title	presenter
08:30 Welcome (00h15')	KÉGL, Balázs
08:45 HEP&ML and the HiggsML challenge (00h35')	KÉGL, Balázs
09:20 Embedding ML in Classical Statistical tests used in HEP (invited talk) (00h40')	CRANMER, Kyle

Coffee break - Level 5, room 511 c (10:00-10:30)

Session 2 - Level 5, room 511 c (10:30-12:10)

time title	presenter
10:30 Presentation of the winner of the HiggsML challenge (00h20')	MELIS, Gábor
10:50 Presentation of the runner up of the HiggsML challenge (00h20')	SALIMANS, Tim
11:10 Presentation of the winner of the HEP meets ML prize (00h20')	CHEN, Tianqi
11:30 Real time data analysis at the LHC : present and future (00h40')	GLIGOROV, Vava

<u>Session 3</u> - Level 5, room 511 c (15:00-16:30)

time	title	presenter
15:00	Machine Learning for Ultra-High-Energy Physics (invited talk) (00h40')	WHITESON, Daniel
15:40	Weighted Classification Cascades for Optimizing Discovery Significance in the HiggsML Challenge (00h20')	MACKEY, Lester
16:00	Consistent optimization of AMS by logistic loss minimization (00h20')	KOTLOWSKI, Wojciech

Coffee break - Level 5, room 511 c (16:30-17:00)

<u>Session 4</u> - Level 5, room 511 c (17:00-18:30)

time	title	presenter
	Ensemble of maximied Weighted AUC models for the maximization of the median discovery significance (00h20')	MORALES, Roberto Diaz
17:20	Deep Learning In High-Energy Physics (invited talk) (00h40')	BALDI, Pierre
18:00	Panel discussion (00h30')	