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CLASSIFICATION FOR DISCOVERY  
THE HIGGSML CHALLENGE
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Challenge 1: estimation la plus précise et en un temps CPU minimal de 
la masse du candidat boson de Higgs en fonction des observables de 
l’événement, et malgré les particules non mesurées. Précision actuelle 
(intégration avec chaine de Markov en dimension 5) ~20% en 0.1s par 
événement 

Challenge 2: optimiser l’extraction du signal boson de Higgs par rapport aux 
différents bruits de fond, à l’aide d’une centaine de variables sur quelques 
centaines de millions d’événements simulés 
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Data collection
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THE LHC IN GENEVA
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THE ATLAS DETECTOR
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THE ATLAS DETECTOR
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DATA COLLECTION

• Hundreds of millions of proton-proton collisions per 
second	



• Filtered down to 400 events per second	



• still petabytes per year 	



• real-time (budgeted) classification: trigger 	



• a research theme on its own 

8



9

Feature engineering



FEATURE ENGINEERING

• Each collision is an event	



• hundreds of particles: decay products 	



• hundreds of thousands of sensors (but sparse) 	



• for each particle: type, energy, direction is measured 	



• a fixed-length list of ~30-40 extracted features: x	



• e.g., angles, energies, directions, reconstructed mass	



• based on 50 years of accumulated domain knowledge
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THE HIGGS TO TAU-TAU CHANNEL

• Highly unbalanced data	



• we expect to see <100 Higgs bosons per year in ≈1010 events	



• after pre-selection, we will have  
500K background (negative) and  
1K signal (positive) events per year (2012)	



• Training on simulated data
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The metric
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CLASSIFICATION FOR DISCOVERY
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Goal: optimize the expected discovery significance 

flux × time

selection
expected background	



say, b = 100 events

total count,	


say, 150 events

excess is s = 50 events

AMS = = 5 sigma

approaches a simple asymptotic form related to the chi-squared distribution in the large-sample
limit. In practice the asymptotic formulae are found to provide a useful approximation even for
moderate data samples (see, e.g., [6]). Assuming that these hold, the p-value of the background-
only hypothesis from an observed value of q0 is found to be

p = 1 � F (
p

q0) , (11)

where F is the standard Gaussian cumulative distribution.
In particle physics it is customary to convert the p-value into the equivalent significance Z,

defined as
Z = F�1(1 � p), (12)

where F�1 is the standard normal quantile. Eqs. (11) and (12) lead therefore to the simple result

Z =
p

q0 =

s

2
✓

n ln
✓

n
µb

◆
� n + µb

◆
(13)

if n > µb and Z = 0 otherwise. The quantity Z measures the statistical significance in units
of standard deviations or “sigmas”. Often in particle physics a significance of at least Z = 5 (a
five-sigma effect) is regarded as sufficient to claim a discovery. This corresponds to finding the
p-value less than 2.9 ⇥ 10�7.11

4.2 The median discovery significance
Eq. (13) represents the significance that we would obtain for a given number of events n observed
in the search region G, knowing the background expectation µb. When optimizing the design of
the classifier g which defines the search region G = {x : g(x) = s}, we do not know n and µb. As
usual in empirical risk minimization [9], we estimate the expectation µb by its empirical counter-
part b from Eq. (5). We then replace n by s + b to obtain the approximate median significance

AMS2 =

r
2
⇣
(s + b) ln

⇣
1 +

s
b

⌘
� s

⌘
. (14)

Taking into consideration that (x + 1) ln(x + 1) = x + x2/2 +O(x3), AMS2 can be rewritten as

AMS2 = AMS3 ⇥
s

1 +O
✓⇣ s

b

⌘3
◆

,

where
AMS3 =

sp
b

. (15)

The two criteria Eqs. (14) and (15) are practically indistinguishable when b � s. This approxima-
tion often holds in practice and may, depending on the chosen search region, be a valid surrogate
in the Challenge.

In preliminary runs it happened sometimes that AMS2 was maximized in small selection
regions G, resulting in a large variance of the AMS. While large variance in the real analysis is
not necessarily a problem, it would make it difficult to reliably compare the participants of the
Challenge if the optimal region was small. So, in order to decrease the variance of the AMS, we
decided to bias the optimal selection region towards larger regions by adding and artificial shift
breg to b. The value breg = 10 was determined using preliminary experiments.

11This extremely high threshold for statistical significance is motivated by a number of factors related to multiple
testing, accounting for mismodeling and the high standard one would like to require for an important discovery.
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How to design g to maximize the sensitivity?

•
A two-stage approach

1. optimize a discriminant (score) function f : Rd ! R using a classical

learning algorithm (BDT, NN)

1 / 1
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How to design g to maximize the sensitivity?

•
A two-stage approach (make figure with score)

1. optimize a discriminant (score) function f : Rd ! R using a classical

learning algorithm (BDT, NN)

2. define g(x) = sign
�
f(x)� ✓

�
and optimize ✓ for maximizing the AMS

1 / 1
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Comparing with Atlas analysis

•
Atlas does a manual pre-selection (category), the first maximum of

the AMS is completely eliminated. Why?

1 / 1
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s = 250	


b = 5000 ± 500!

Sys
tem

atic
s!
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How to handle systematic (model) uncertainties?
• OK, so let’s design an objective function that can take background

systematics into consideration

• Likelihood with unknown background b ⇠ N (µb,�b)

L(µs, µb) = P (n, b|µs, µb,�b) =
(µs + µb)n

n!
e�(µs+µb) 1p

2⇡�b
e�(b�µb)

2/2�b
2

• Profile likelihood ratio �(0) =
L(0, ˆ̂µb)

L(µ̂s, µ̂b)

• The new Approximate Median Significance (by Glen Cowan)
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How to handle systematic (model) uncertainties?
•

The new Approximate Median Significance
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• Exciting physics	



• The Higgs to tau-tau excess is not yet at five sigma  
Tech. Rep. ATLAS-CONF-2013-108	



• Exciting data science	



• What is the theoretical relationship between classification and test sensitivity?	



• What is the quantitative criteria to optimize?	



• How to formally include systematic uncertainties?	



• How to design (or redesign classical) algorithms for optimizing the criteria?	



• Redesign the counting test?
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We organized a  
data challenge  

to answer some of these 
questions

Center for Data Science

Paris-Saclay

the HiggsML challenge
May to September 2014

When High Energy Physics meets Machine Learning

Joerg Stelzer - Atlas-CERN
Marc Schoenauer - INRIA

Balázs Kégl - Appstat-LAL
Cécile Germain - TAO-LRI

David Rousseau - Atlas-LAL
Glen Cowan - Atlas-RHUL

Isabelle Guyon - Chalearn
Claire Adam-Bourdarios - Atlas-LAL

Thorsten Wengler - Atlas-CERN  
Andreas Hoecker - Atlas-CERN 

Organization committee Advisory committee

info to participate and compete : https://www.kaggle.com/c/higgs-boson
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• Organizing committee	



• David Rousseau (ATLAS / LAL) 

• Balázs Kégl (AppStat / LAL) 

• Cécile Germain (LRI / UPSud) 

• Glen Cowan (ATLAS / Royal 
Holloway) 

• Claire Adam Bourdarios (ATLAS 
/ LAL) 

• Isabelle Guyon (ChaLearn)
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• 16K$ prize pool	



• 7-4-2K$ for the top three	



• HEP meets ML award for the 
most useful model, decided by 
the ATLAS members of the 
organizing committee
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Center for Data Science

Paris-Saclay

the HiggsML challenge
May to September 2014

When High Energy Physics meets Machine Learning

Joerg Stelzer - Atlas-CERN
Marc Schoenauer - INRIA

Balázs Kégl - Appstat-LAL
Cécile Germain - TAO-LRI

David Rousseau - Atlas-LAL
Glen Cowan - Atlas-RHUL

Isabelle Guyon - Chalearn
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Andreas Hoecker - Atlas-CERN 

Organization committee Advisory committee

info to participate and compete : https://www.kaggle.com/c/higgs-boson
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• Official ATLAS GEANT4 
simulations	



• 30 features (variables)	



• 250K training: input, label, weight	



• 100K public test (AMS displayed real-
time), only input	



• 450K private test (to determine the 
winner after the closing of the 
challenge), only input	



• public and private tests are shuffled, 
participants submit a vector of 550K 
labels
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ARE THE WINNING SCORES SIGNIFICANTLY 
DIFFERENT?
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• 18 months to organize it	



• 4 months to run it	



• ?? months to transfer to 
HEP what we learned
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WHAT HAVE WE LEARNED SO FAR?

• Neural nets (dropout, RLU, etc.) 
rule (although no slam dunk)	



• Ensemble methods (random 
forest, boosting) rule	



• Meta-ensembles of diverse 
models rule	



• 800K points is small for this task: 
careful cross-validation rules
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800K IS A SMALL? 

• We asked participants to find good classifiers (in “smooth” 
AUC sense) but also to come up with the best selection 
threshold	



• Optimal region contains about ~15% of the points	



• Standard deviation of AMS (given the classifier and the 
threshold) is about 0.04 (0.08 on the public leaderboard)
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800K IS A SMALL? 

Find the maximum of a noisy diffusion-like process
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META

• A data challenge is a great way to	



• generate visibility	



• human resources	



• optimize a tiny segment of the complete workflow	



• Limitations	



• technical constraints (e.g., no server-side execution)	



• sociological constraints (should not be too far from an off-the-shelf problem)	



• emphasizes competition instead of collaboration

42



DATA WILL BE AVAILABLE SOON

http://opendata.cern.ch/education/ATLAS
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ML IN HIGH-ENERGY PHYSICS

• Budgeted classification for online triggers	



• Maximizing the discovery significance and other exotic 
metrics	



• Deep learning for getting closer to raw data 

• How to be robust to systematic errors
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HEPML workshop at NIPS14

Saturday 13 December 2014

Session 1 - Level 5, room 511 c (08:30-10:00)

time title presenter
08:30 Welcome (00h15') KÉGL, Balázs

08:45 HEP&ML and the HiggsML challenge (00h35') KÉGL, Balázs

09:20 Embedding ML in Classical Statistical tests used in HEP (invited talk) (00h40') CRANMER, Kyle

Coffee break - Level 5, room 511 c (10:00-10:30)

Session 2 - Level 5, room 511 c (10:30-12:10)

time title presenter
10:30 Presentation of the winner of the HiggsML challenge (00h20') MELIS, Gábor

10:50 Presentation of the runner up of the HiggsML challenge (00h20') SALIMANS, Tim

11:10 Presentation of the winner of the HEP meets ML prize (00h20') CHEN, Tianqi

11:30 Real time data analysis at the LHC : present and future (00h40') GLIGOROV, Vava

Session 3 - Level 5, room 511 c (15:00-16:30)

time title presenter
15:00 Machine Learning for Ultra-High-Energy Physics (invited talk) (00h40') WHITESON, Daniel

15:40 Weighted Classification Cascades for Optimizing Discovery Significance in the
HiggsML Challenge (00h20')

MACKEY, Lester

16:00 Consistent optimization of AMS by logistic loss minimization (00h20') KOTLOWSKI, Wojciech

Coffee break - Level 5, room 511 c (16:30-17:00)

Session 4 - Level 5, room 511 c (17:00-18:30)

time title presenter
17:00 Ensemble of maximied Weighted AUC models for the maximization of the

median discovery significance (00h20')
MORALES, Roberto Diaz

17:20 Deep Learning In High-Energy Physics (invited talk) (00h40') BALDI, Pierre

18:00 Panel discussion (00h30')
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