

BSM Higgs searches

Adrien Caudron (UCLouvain – CP3) on behalf of CMS experiment

Higgs Hunting 2015 30th July – 1st August 2015 Orsay, France

Outline:

- Search for non-SM h decays
- Search for non-SM h production
- Search for other Higgses

h → invisible

- Vector Boson Fusion production of h → best sensitivity [1]
- Combination with Z(II)h and Z(bb)h [1,2]

- $m_h = 125 \text{ GeV limit on } B(h \rightarrow \text{invisible})$:
 - VBF: 57% (exp. 40%)
 - VBF+ZH: 47% (exp. 35%)
- Possible reinterpretation in terms of limit on a DM candidate
 - spin-independent DM-nucleon cross section in Higgsportal models comparisons with other DM experiments

h → y + invisible

More on talk from R.Teixeira De Lima later today (link)

- low-scale SUSY models
 - Gravitino (\check{G}) produced by the decay of a Neutralino (χ_1)
 - $\chi_1 \rightarrow \breve{G} + \gamma$
 - $m_{\tilde{G}}$ negligible and $m_{\chi 1}$ ranging from 1 to 120 GeV
 - Two cases:
 - $h \rightarrow \breve{G} + \chi_1 (m_h/2 < m_{\chi 1} < m_h)$
 - $h \rightarrow \chi_1 \chi_1 (m_{\chi 1} < m_h/2)$
- Limit expressed as function of $m_{\chi 1}$ and $c\tau_{\chi 1}$

Flavour-violating Higgs processes

 Searches for flavour-violating decay or production of the h boson

- $t \rightarrow ch$

-
$$B(h \rightarrow \mu \tau)$$
 < 1.51% [1]

-
$$B(t \rightarrow ch) < 0.56\%$$
 [2]

- Probe Higgs Yukawa couplings
 - Better limits than previous analyses for $Y_{\mu\tau}$

$$-\sqrt{|\lambda_{tc}^h|^2 + |\lambda_{ct}^h|^2} < 0.14$$

$X \rightarrow hh \rightarrow bbbb$, bbyy, multi-lepton and leptons+photons $H \rightarrow hh \rightarrow bb\tau\tau$ (new)

- Looking for heavy resonances decaying in pair of h bosons
- X can be reinterpreted as:
 - Spin-0 radion or spin-2 graviton [1,2]
 - In Warped Extra Dimensions models
 - High mass H [3, 4]

- [1] CMS-PAS-HIG-13-032
- [2] arXiv:1503.04114, Submitted to Physics Letters B
- [3] Phys. Rev. D 90, 112013
- [4] Paper to be submitted soon, EPS talk

More on talk from M.T Grippo this morning (link)

$X \rightarrow ZZ$, WW

- SM h boson search for high mass → reinterpreted in term of BSM models
 - Combine IVIV, IVqq, 4I, IIVV, IIqq
- Probe m_x in [145 1000] GeV
- Assume SM Higgs-like productions and decays

- Reinterpretation in terms of EW singlet extension of SM in terms of model parameters:
 - B_{new} : branching fraction of the EW singlet to non-SM decay mode
 - C': the scale factors of the couplings with respect to the SM of the high-mass Higgs boson
- Only consider cases with $\Gamma_{H} \leq \Gamma_{SM}$
- Results provided independently for each h decays and production mode (ggh, VBF, h→ZZ, h→WW)

tan β

CMS

More on talk from B.Courbon yesterday (link)

- Low mass search [80-110] GeV (new results) [1]
- High mass search [150-850] GeV [2]:
 - Test different signal width up to 10% of the mass
 - Interpretation for spin-0 and spin-2 resonances
 - Limits as function of:
 - m_x
 - m_x vs Γ_x
 - Model dependent tanβ vs cos(β-α) at fix m_x

19.7 fb⁻¹ (8 TeV)

Type I 2HDM; A $\rightarrow \gamma \gamma$

---- NLO expected

 $m_{\Delta} = 200 \text{ GeV}; m_{L} = 200 \text{ GeV}$ Observed

NLO expected $\pm 1 \sigma$

NLO expected $\pm 2 \sigma$

[1] CMS-HIG-14-037

[2] arXiv:1506.02301, Submitted to Phys. Lett. B

Other di-boson search: X → Zy (CMS-PAS-HIG-14-031, backup)

$A \rightarrow Zh$

- Several channels
 - $Z(II)h(\tau\tau)$ (new) [1]
 - Z(II)h(bb) [2]
 - Multi-leptons and leptons+photons [3]
- Target MSSM like models
 - Model dependent and model independent limits

^[1] Paper to be submitted soon, EPS talk

^[2] arXiv:1504.04710, Submitted to Physics Letters B

^[3] Phys. Rev. D 90, 112013

Combination $H \rightarrow hh$ and $A \rightarrow Zh$

- Several channels can be combined for defined BSM models
 - Example: H → hh + A → Zh
- Limits derived as function of m_A vs tan β and tan β vs cos(β - α)

$H \rightarrow ZA, A \rightarrow ZH$

- 2HDM with non-degenerate H and A, $m_h = 125$ GeV, $m_{H\pm} = max(m_H, m_A)$
- Two channels:
 - Z(II)A/H(bb)
 - $Z(II)A/H(\tau\tau)$
- Limit as function of m_H and m_A for $\cos(\beta \alpha)=0.01$, $\tan\beta=1.5$
- Limit as function of tan β and cos($\beta \alpha$) for m_H = 350 GeV, m_A = 150 GeV

10

[1] CMS-PAS-HIG-15-001

Light Higgses

- 2 analyses in the context of NMSSM:
 - $h_1 + X \rightarrow bb + X [1]$
 - $30 < m_{h1} < 100 \text{ GeV}$
 - $h_{1,2} \rightarrow a_1(\mu\mu)a_1(\mu\mu) + X [2]$
 - $0.25 < m_{a1} < 3.55 \text{ GeV}$ and $90 < m_{h1.2} < 150$
- bbA production with $A \rightarrow \tau\tau$ in the context of the 2HDM type II (new) [3]
 - $-25 < m_A < 80 \text{ GeV}$
 - Comparisons with models with different Y_b sign

- [1] CMS-PAS-HIG-14-030
- [2] arXiv:1506.00424, Submitted to Physics Letters B
- [3] Paper to be submitted soon, EPS talk

MSSM $\Phi \rightarrow bb$, $\tau\tau$

- Search for new resonances in bb and ττ in the context of MSSM
 - Ф can be A, h, H
 - Φ bb consider only production with extra b's [1]
 - Sensitive mainly to large tanβ
 - Φ → ττ consider also ggΦ production [2]
 - 5 scenarios tested: m_h^{max} , m_h^{mod+} , m_h^{mod-} , light-stop, and light-stau (+ τ-phobic, and low- m_H for Φ → ττ)

Charged Higgses

- Several channels explored:
 - tt \rightarrow WbH \pm b (H \pm \rightarrow TV, cs) [1, 2]
 - $m_{H\pm} < m_t \rightarrow limit on B(t \rightarrow H^{\pm}b)$
 - tH^{\pm} ($H^{\pm} \rightarrow \tau v$, tb) [1, 3]
 - $m_t < m_{H\pm} \rightarrow limit on \sigma \times B$

Summary

- Discovery of SM Higgs boson enhance interest for this topic
- Wide CMS BSM Higgs search program during Run1
 - Complementary to SM Higgs precision measurements
- Until now → no evidence of new physics in the Higgs sector observed
 - Large phase space explored
 - Limits set on $\sigma \times B$
 - Sensitivity reached O(10 fb) for several analyses
 - Interpretation of the limits in several BSM models (generic 2HDM, MSSM, NMSSM, DM candidate, singlet...)
- Run2 LHC would allow to push further the searches
 - New ideas for final states and models to explore are always welcomed

Backup

h → invisible (additional information)

- Vector Boson Fusion production of h → best sensitivity [1]
 - Improvement w.r.t. to [2] due to "parked" data recorded in 2012 and reconstructed in 2013
 - Lower trigger threshold → larger acceptance → improvement on the selection to increase the sensitivity
 - Expected limits on B(h → inv): 0.49% → 0.40%
- Other result: assuming SM Higgs-like particle H \rightarrow limit on $\sigma \times B(H \rightarrow inv)$ vs m_H

$h \rightarrow y + invisible$ (other results)

Results also expressed in function of m_H where H is a SM-like H boson

Figure 6: Expected and observed 95% CL upper limits on $\sigma_{gg\to H} \mathcal{B}$ as a function of the Higgs boson mass with $m_{\tilde{\chi}_1^0} = m_H - 30\,\text{GeV}$ in ggH channel (left) and in the ZH channel (right).

$h \rightarrow \mu \tau$ and $t \rightarrow ch$ (additional material)

Limits on branching ratio at 95% CL by channels and compared to expectation

TABLE IX. Comparison of the observed and expected 95% C.L. limits on $\mathcal{B}(t \to ch)$ from individual Higgs boson decay modes along with the 68% C.L. uncertainty ranges. [2]

		Upper limits on $\mathcal{B}(t \to ch)$		
Higgs boson decay mode		Obs.	Exp.	68% C.L. range
$\mathcal{B}(h \to WW^*)$	= 23.1%	1.58%	1.57%	(1.02–2.22)%
$\mathcal{B}(h o au au)$	=6.15%	7.01%	4.99%	(3.53–7.74)%
$\mathcal{B}(h o ZZ^*)$	= 2.89%	5.31%	4.11%	(2.85-6.45)%
Combined multileptons (WW^* , $\tau\tau$, ZZ^*)		1.28%	1.17%	(0.85-1.73)%
$\mathcal{B}(h o\gamma\gamma)$	= 0.23%	0.69%	0.81%	(0.60-1.17)%
Combined multileptons + diphotons		0.56%	0.65%	(0.46-0.94)%

$X \rightarrow hh \rightarrow bbbb$, bbyy, multi-lepton and leptons+photons (other results)

- Looking for heavy resonances decaying in pair of h bosons
- X can be reinterpreted as spin-2 graviton [1,2]
 - In Warped Extra Dimensions models
- High mass H → limits on 2HDM models parameter [3]

- [1] CMS-PAS-HIG-13-032
- [2] arXiv:1503.04114, Submitted to Physics Letters B
- [3] Phys. Rev. D 90, 112013

X → ZZ, WW (split results)

- SM h boson search for high mass → reinterpreted in term of BSM models
 - Combine IvIv, Ivqq, 4I, IIvv, Ilqq
- Probe m_x in [145 1000] GeV
- Assume SM Higgs-like production and decay

- Reinterpretation in terms of EW singlet extension of SM in terms of model parameters:
 - B_{new} : branching fraction of the EW singlet to non-SM decay mode
 - C': the scale factors of the couplings with respect to the SM of the high-mass Higgs boson
- Only consider cases with $\Gamma_H \le \Gamma_{SM}$
- Results provided independently for each h decays and production mode (ggh, VBF, h→ZZ, h→WW)

X → yy (other results)

- · Search for excess on top of background
 - Test different signal width up to 10% of the mass
- Range explored: [150-850] GeV
- Interpretation for spin-0 and spin-2 resonances
- Limits as function of:
 - m_x (spin-2 small width, spin-0 large width)
 - $\Gamma_{\rm x}$ for $m_{\rm x}$ = 840 GeV

$X \to Z \gamma$

- Search for an excess in Z(II)γ with I = e,μ
- Explore mass range [200-500]
- Test several X width hypothesis
 - Broad width: SM-like H width
 - Narrow width: 1% of m_x

A → Zh (more results)

- Several channels
 - Z(II)h(bb) [1]
 - Multi-leptons and leptons+photons [2]
- Target MSSM like models
 - Model dependent and model independent limits

$H \rightarrow ZA, A \rightarrow ZH$ (Iltt results)

- 2HDM with non-degenerate H and A, $m_h = 125$ GeV, $m_{H\pm} = max(m_H, m_A)$
- Two channels:
 - Z(II)A/H(bb)
 - Z(II)A/H(ττ)
- Limit as function of m_H and m_A for $\cos(\beta \alpha) = 0.01$, $\tan\beta = 1.5$
- Limit as function of $tan\beta$ and $cos(\beta \alpha)$ for $m_H = 350$ GeV, $m_A = 150$ GeV

[1] CMS-PAS-HIG-15-001

Light Higgses (other results)

- $h_1 + X \rightarrow bb + X$ [1] \rightarrow interpretation of the limits:
 - considering whole NMSSM P4 benchmark with fixed M3~1TeV (gluino mass)
 - Limit on M3 for fixed M1 (bino) and M2 (wino) masses
- $h \rightarrow \gamma_D(\mu\mu)\gamma_D(\mu\mu) + X$ [2] in SUSY model with dark sector
 - $h = h_{SM}(125)$
 - Limit vs ϵ (kinetic mixing parameter between SM y and the dark y_D) and m_{vD}

MSSM $\Phi \rightarrow bb$, $\tau\tau$ (additional results)

- Search for new resonances in bb and ττ in the context of MSSM
 - Ф can be A, h, H
 - Φ → bb consider only production with extra b's [1]
 - Sensitive mainly to large tanβ
 - Φ → ττ consider also ggΦ production [2]
 - 5 scenarios tested: m_h^{max} , m_h^{mod+} , m_h^{mod-} , light-stop, and light-stau (+ τ-phobic, and low- m_H for Φ → ττ)

Charged Higgses (more results)

- Several channels explored:
 - tt \rightarrow WbH $^{\pm}$ b (H $^{\pm}\rightarrow$ TV, cs) [1, 2]
 - $m_{H\pm} < m_t \rightarrow limit on B(t \rightarrow H\pm b)$
 - tH^{\pm} ($H^{\pm} \rightarrow \tau v$, tb) [1, 3]
 - $m_t < m_{H\pm} \rightarrow limit on \sigma \times B$

^[2] CMS-PAS-HIG-13-035

^[3] CMS-PAS-HIG-13-026

Doubly charged Higgses Φ^{±±}

- 6 channels
 - ee, μμ, eμ, eτ, μτ, ττ
- Interpretation for 4 benchmark models

