

BSM Higgs and Vector Boson Scattering at HL-LHC

S. Casasso on behalf of the ATLAS and CMS collaborations

Higgs Hunting 2015

July 30-August 1 2015 Orsay (France)

Outline

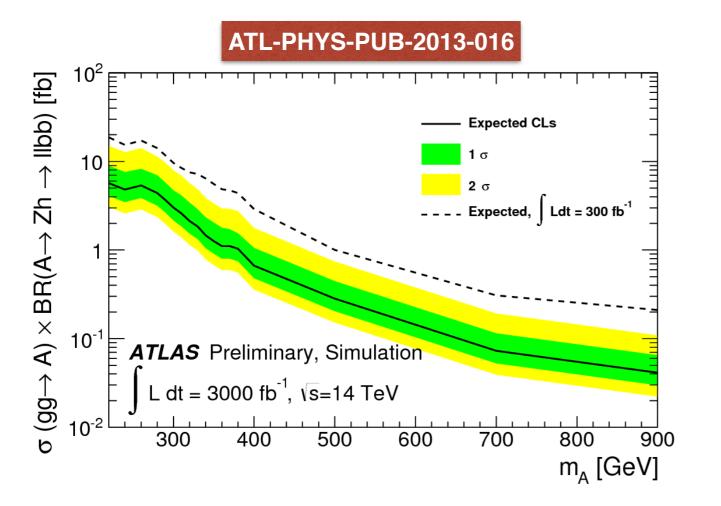
- · Beyond Standard Model (BSM) Higgs
 - Direct searches
 - · Indirect limits
- Vector boson scattering (VBS)
 - · SM electroweak di-boson production
 - · Anomalous quartic gauge couplings (aQGC)

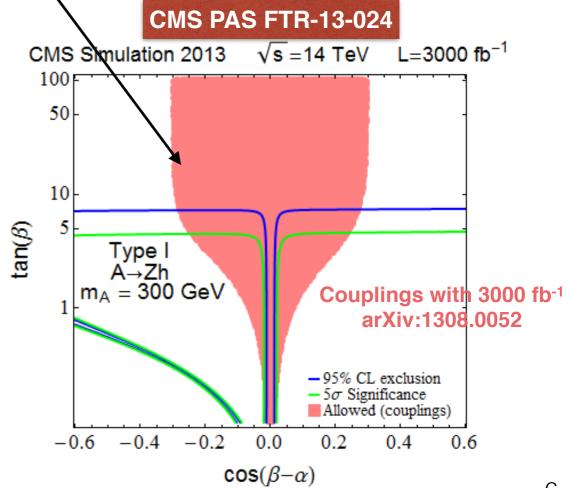
BSM Higgs

How to find BSM Higgs

- · Direct searches for additional Higgs particles
 - · production mechanism is similar to SM Higgs
 - · gluon-fusion, VBF
 - · b-associated production can be enhanced
- · Indirect limits from the 125 GeV Higgs
 - · couplings, rare decays
- Both involve low rates and accurate measurements
 - not necessarily higher energies ⇒ excellent case for HL-LHC

2HDM in a nutshell

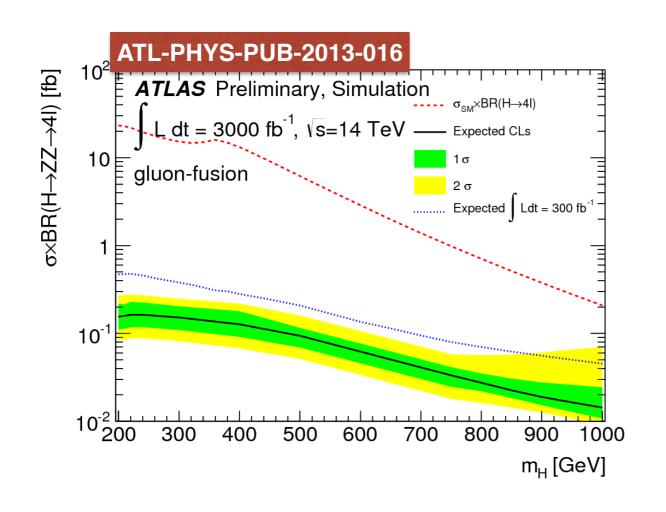

- · Class of models predicting a second Higgs doublet (SUSY, Axion, Baryogenesis)
- · Five physical particles: h,H,A,H[±]
- · Higgs sector described by 7 parameters:
 - · m_h , m_H , m_A , $m_{H\pm}$, $tan\beta$, α , m_{12}^2
- 4 options for fermion couplings
 - Type I: ϕ_1 couples to vector bosons, ϕ_2 couples to fermions ("Fermiophobic")
 - Type II: ϕ_1 couples up-type fermions, ϕ_2 couples to down-type fermions ("MSSM")
 - Type III: quarks as in Type I and charged leptons as in Type II ("lepton-specific")
 - Type IV: quarks as in Type II and charged leptons as in Type I ("flipped")
- · Benchmarks identify the light CP-even h with the 125 GeV Higgs boson
 - SM-like \Rightarrow focus on $\cos(\beta-\alpha)\rightarrow 0$ (SM limit)

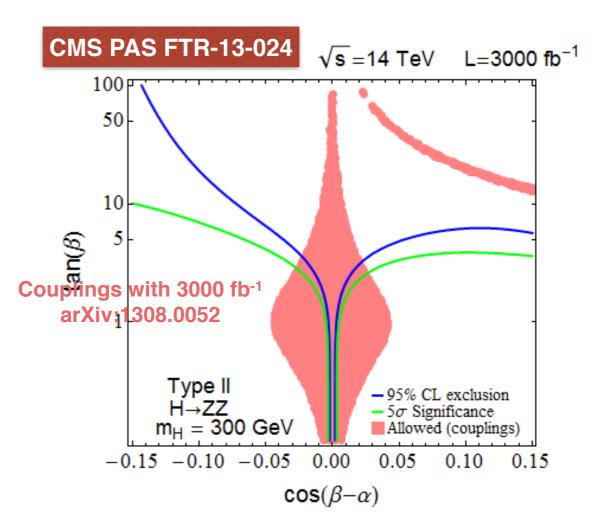


$A \rightarrow Zh \rightarrow Ilbb$

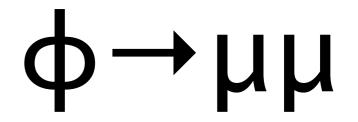
- . The Zh decay mode is in general the dominant for $m_A \! < \! 2 m_{top}$
- · Better sensitivity at **low tanβ**
 - complementary to h coupling measurements and other searches

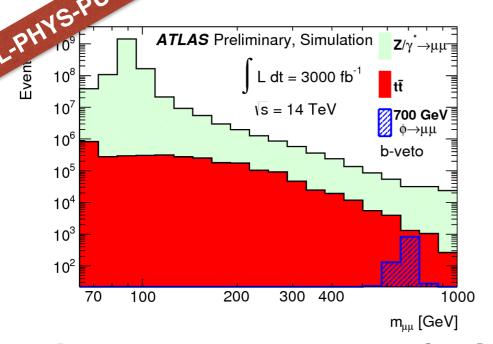
· 4 times better sensitivity with 3000 fb⁻¹ wrt 300 fb⁻¹



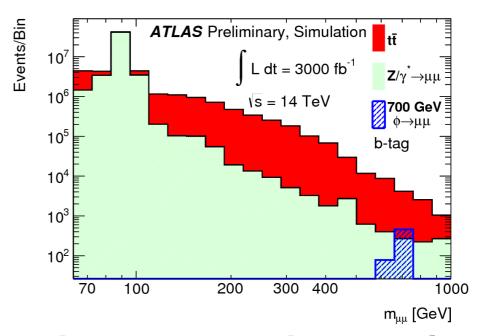


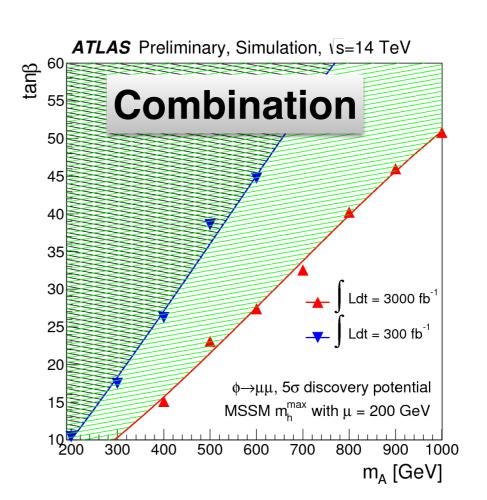
$H \rightarrow ZZ \rightarrow 4I$


- The 4l final state has small cross section but is clean and well reconstructed
- A heavy SM-like Higgs boson decaying to 4l occurs in several extensions of the scalar sector (2HDM,EWK singlet)
- · Limits improve by a factor ~3 with 3000 fb⁻¹
- · Similar sensitivity for ATLAS and CMS (~0.01-0.1 fb)



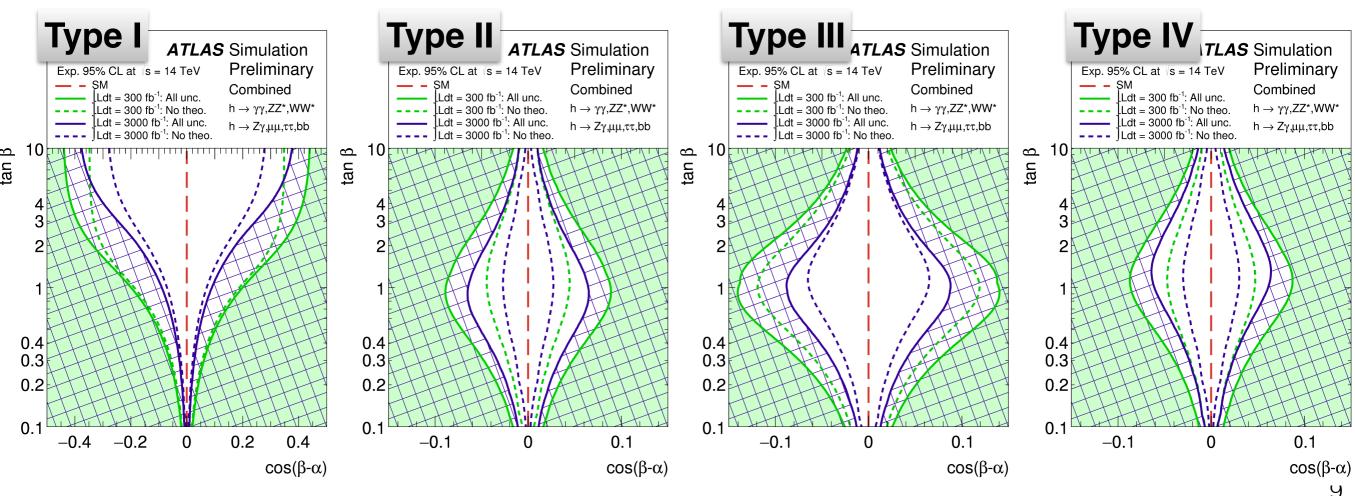
Imperial College London


ATL-PHYS-PUB-2013-016



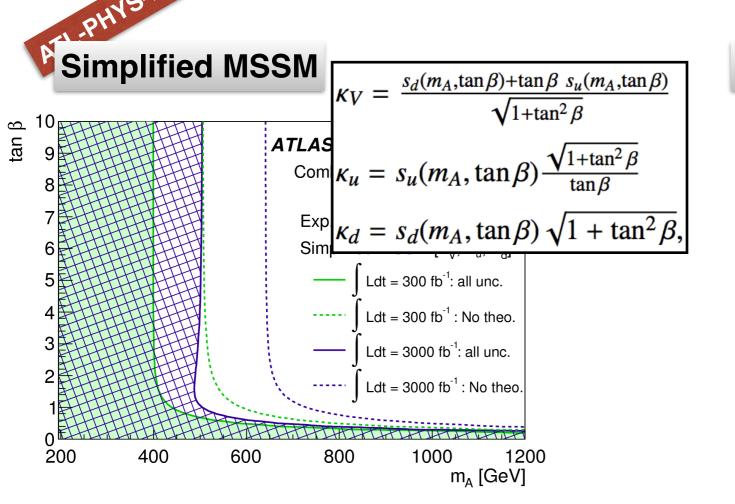
- MSSM-inspired scenario with mass degenerate A/H Higgs bosons
- · Clean final state, with excellent mass resolution
- · Better sensitivity at **high tanß**
- · Significant improvement with 3000 fb⁻¹ with respect to 300 fb⁻¹

≥1 b-tag: target b-associated



Indirect limits: 2HDM

- Use expected accuracy in the couplings k_i of the 125 GeV Higgs boson
 - · functions of the parameters of the model
- · Same decays as in the SM are assumed (b-associated production included as a correction)


h(125) is the light scalar of the 2HDM

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
κ_u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
κ_d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
κ_l	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$



Indirect limits: other models

EWK singlet

$$\kappa'^2 = 1 - \mu_h$$

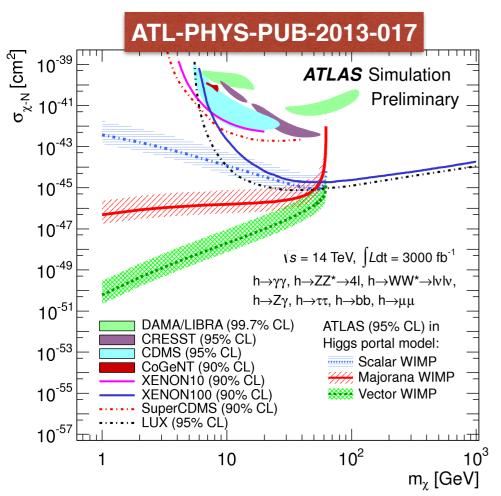
Composite Higgs

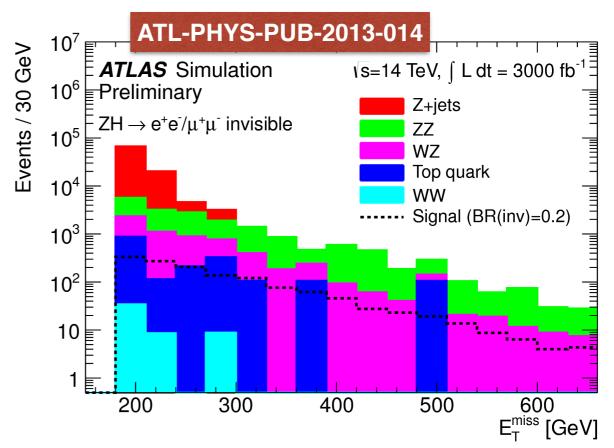
$$\xi = v^2/f^2$$

f is the compositeness scale

Model	Couplings	95% CL low limit L=300/fb	95% CL low limit L=3000/fb
MCHM4	$ \kappa = \kappa_V = \kappa_F = \sqrt{1 - \xi} $	f > 620 GeV	f > 710 GeV
MCHM5	$\kappa_V = \sqrt{1 - \xi}$ $\kappa_F = \frac{1 - 2\xi}{\sqrt{1 - \xi}}.$	f > 780 GeV	f >1 TeV

H-invisible

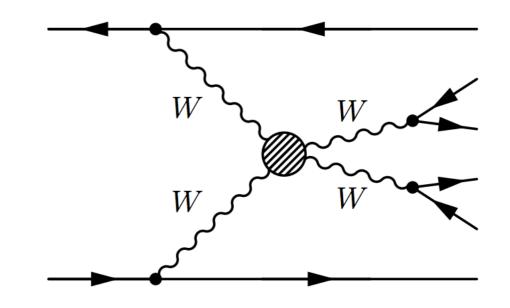

· Direct search ZH (3000/fb):


BR(H→inv.) < **8% (16%)** at 95% CL

for a realistic (conservative) scenario for systematics

 Indirect constraints from the measurement of the 125 GeV couplings (3000/fb):

BR(H→inv.) < 13% at 95% CL


- If H→inv. is only due to decay to a pair of WIMPs, limits are set on the DM-nucleon cross section
 - Large improvement (~factor 5) with respect to the 8 TeV results
- · Collider results are competitive with other experiments (low DM masses)

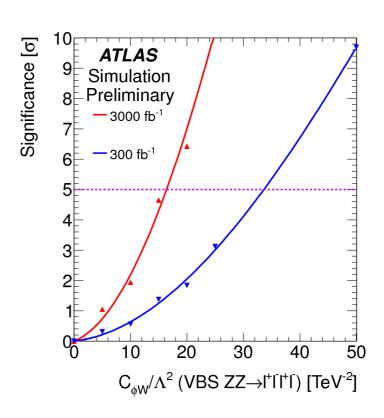
Vector boson scattering

VBS in a nutshell

- W_LW_L scattering violates unitarity at high energies
 - in the SM it is restored by the Higgs boson
 - need experimental confirmation

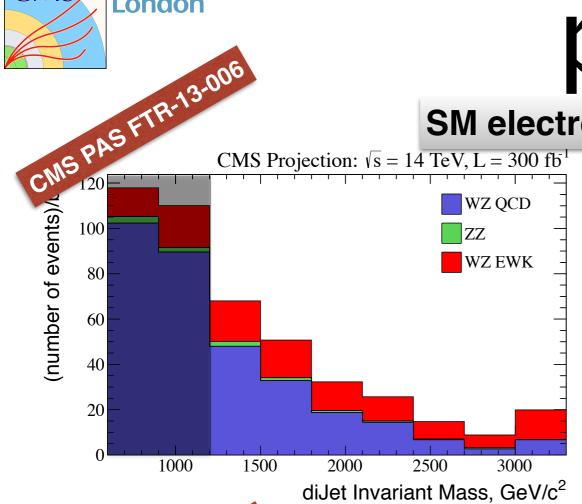
- · **VBS** is sensitive to QGC and to the electroweak symmetry breaking
- · New physics (aQCG) can alter the VBS cross section
 - exchange of heavy scalar particles
- · aQCGs are parameterised through higher dimension operators in effective field theory
- · Experimental signature: di-boson production in association with 2 jets with large rapidity gap and large invariant mass

$pp \rightarrow ZZjj \rightarrow 4ljj$


Small cross section but clean final state

- · Sensitivity extracted using the m41 mass spectrum
- · Results are interpreted for the coefficient of the dim-6 operator $O_{\varphi W}$ involving Higgs and gauge boson fields

$$\mathcal{L}_{\phi W} = \frac{c_{\phi W}}{\Lambda^2} \text{Tr}(W^{\mu \nu} W_{\mu \nu}) \phi^{\dagger} \phi$$


	Ē	ATLAS Sim	ulation F	relimin	ary		VBS Z	ZZ (SM)	=
35		ſ	= 3000 fl		,	,,,,,		-= (3, ′BS ZZ +	4
30		J				<i>₩</i>	C _{ow} =	= 15/TeV	2 =
25								Z QCD	
20									=
15									=
10									=
5	<u>=</u> =								
C	.2	0.3	0.4	0.5	0.6	0.7	0.8	1	11/2
								m _{4l} [Te	eV]

	Coefficient	5σ (L=300/fb)	5σ (L=3000/fb)
ATLAS	СфW/Л2	34 TeV ⁻²	16 TeV ⁻²

pp→WZjj→lvlljj

SM electroweak WZ production

- Counting experiment for $m_{jj} > 1.2$ TeV
- Evidence at 5σ with 185 fb⁻¹

aQGC

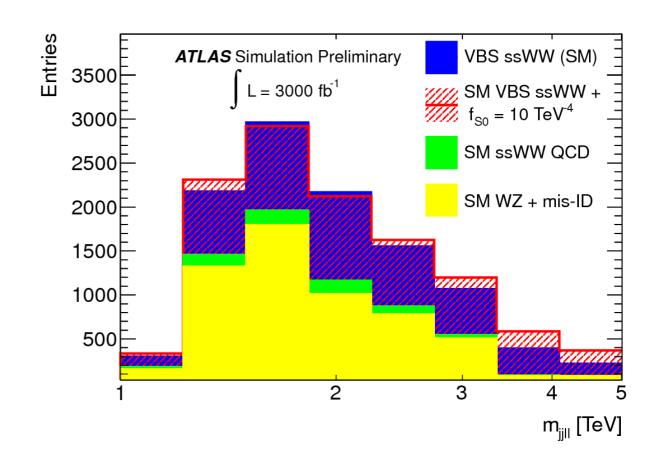
$$\mathcal{L}_{T,1} = \frac{f_{T1}}{\Lambda^4} \text{Tr}[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta}] \times \text{Tr}[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu}]$$

ATL-PHYS-P	UB-E	
450 E	ATLAS Simulation Preliminary	VBS WZ (SM)
-	$\int L = 3000 \text{ fb}^{-1}$	SM VBS WZ + = f _{T1} = 1.0 TeV ⁻⁴
350		VBS WZ (SM)
300		VDS WZ (SIVI)
250		SM WZ QCD
200		=
150		4
100		
50		
	0.6 0.7 0.8 0.9 1	

	Coefficient	5σ (L=300/fb)	5σ (L=3000/fb)
ATLAS	f _{⊤1} /∧⁴	1.3 TeV ⁻⁴	0.6 TeV ⁻⁴
CMS	f _{⊤1} /∧⁴	1.00 TeV ⁻⁴	0.55 TeV ⁻⁴

$pp \rightarrow W^{\pm}W^{\pm}jj \rightarrow lvlvjj$

ATL-PHYS-PUB-2010


ATL-PHYS-PUB-2010

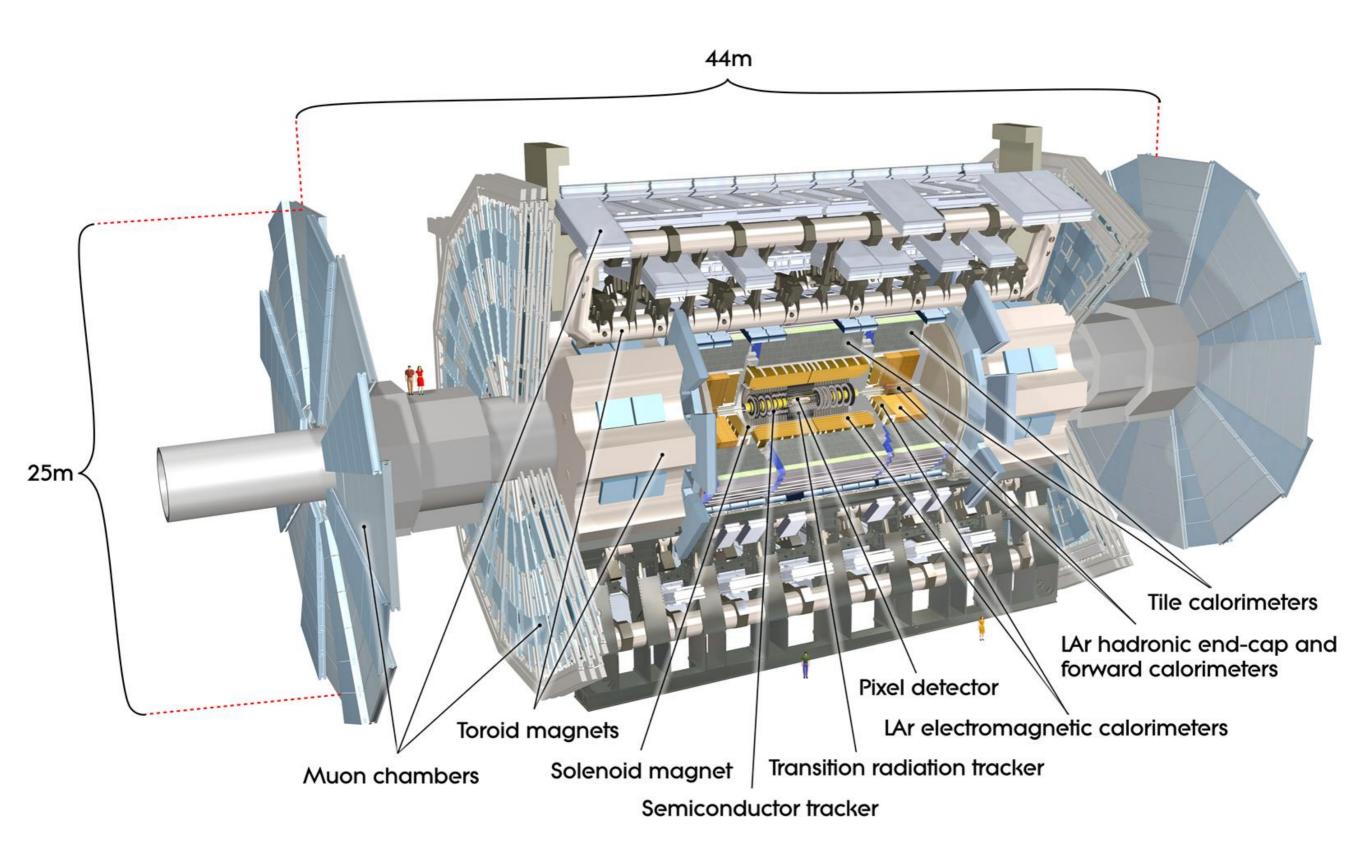
W

q

q'

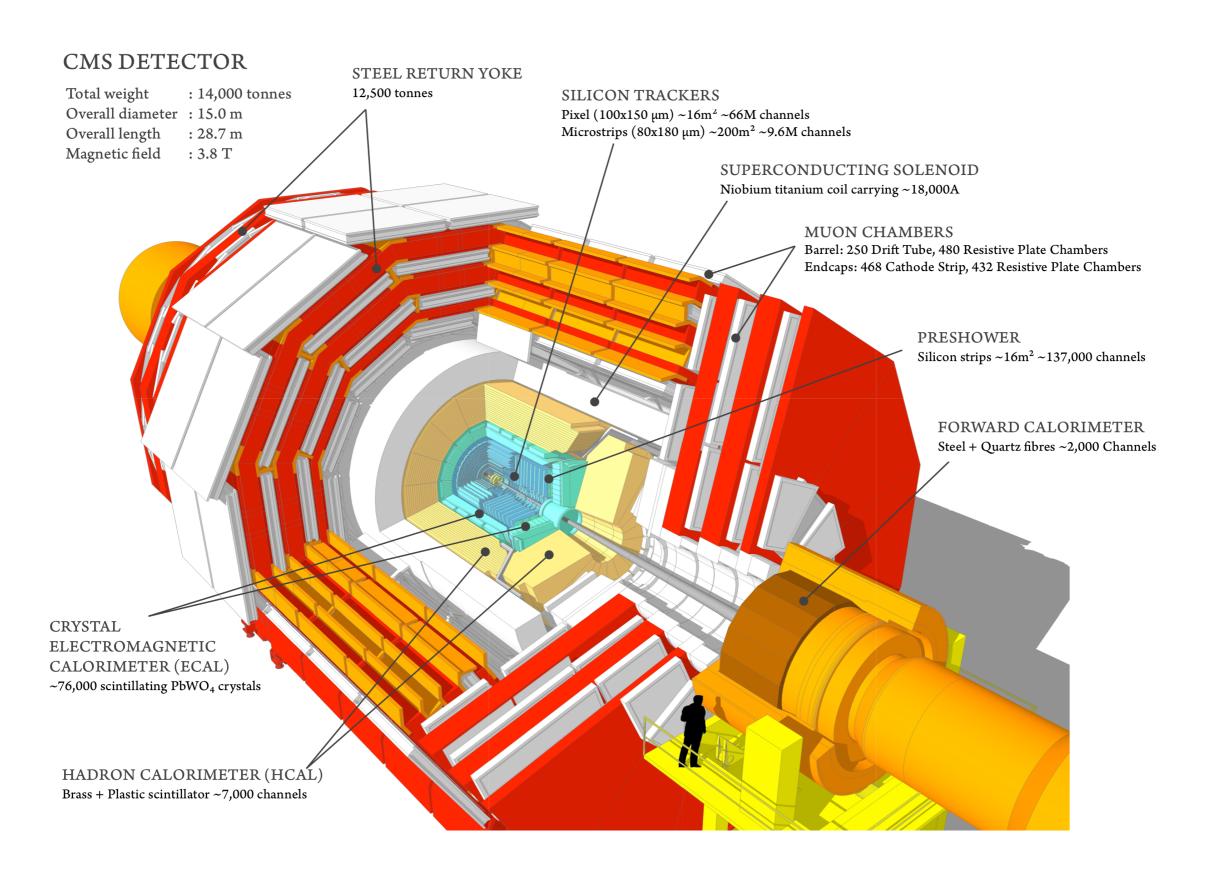
- The m_{Iljj} variable is used to discriminate from the background
- Main background is WZ (lost lepton from Z decay)
- Sensitivity to dim-8 with only derivatives of Higgs field

$\mathcal{L}_{S,0}$	$_{0}=\frac{f_{S0}}{\Lambda^{4}}[(D_{\mu}\phi)^{\dagger}]$	$[D_{\nu}\phi)] \times [(D^{\mu}\phi)]$	$^{\dagger}D^{ u}\phi)]$
	Coefficient	5σ (L=300/fb)	5σ (L=3000/fb)
ATLAS	f _{S0} /∧⁴	10 TeV ⁻⁴	4.5 TeV ⁻⁴


Summary

- The HL-LHC is a unique possibility to look for new physics in the Higgs sector
 - significant gain in studying processes with small cross sections and performing precision measurements of the couplings
- Phase II upgrade is crucial for most of these channels
 - improved Trigger, extended Tracking, forward Calorimetry
- · Projections by **ATLAS** and **CMS** confirm the presence of a promising physics program with Lint=3000 fb⁻¹

Additional slides



ATLAS detector

CMS detector

Phase I detector upgrades

· ATLAS

- Muon detector: new small wheels
- · Calorimeter: improved granularity for L1 Trigger
- Fast track trigger
- Forward system installation

· CMS

- · Pixel detector: replacement
- Hadron Calorimeter: new photodetectors and electronics
- L1-Trigger: FPGAs and µTCA backplane technology, new architecture
- Muon detector: CSC and RPC 4th station

Phase II detector upgrade

· ATLAS

- · Tracker detector: replacement (new layout)
- · LAr calorimeter: new electronics
- · Forward calorimeter: upgrade under study
- Muon system: replacement of forward detectors
- Muon Track Trigger

· CMS

- · Tracker detector: replacement (new layout)
- · Pixel detector: extended coverage
- Track Trigger
- · Calorimeter: High Granularity Calorimeter (endcap), replacement of electronics
- · Muon System: new forward detector, replacement of electronics

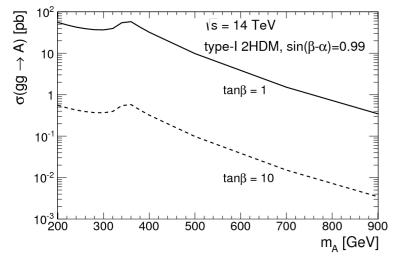
2HDM: couplings

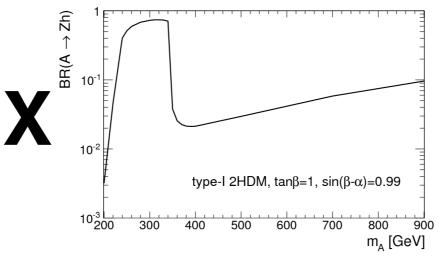
Most general 2HDM Lagrangian

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2})$$

$$+ \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left\{ \frac{1}{2} \lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + [\lambda_{6} (\Phi_{1}^{\dagger} \Phi_{1}) + \lambda_{7} (\Phi_{2}^{\dagger} \Phi_{2})] (\Phi_{1}^{\dagger} \Phi_{2}) + \text{h.c} \right\}$$

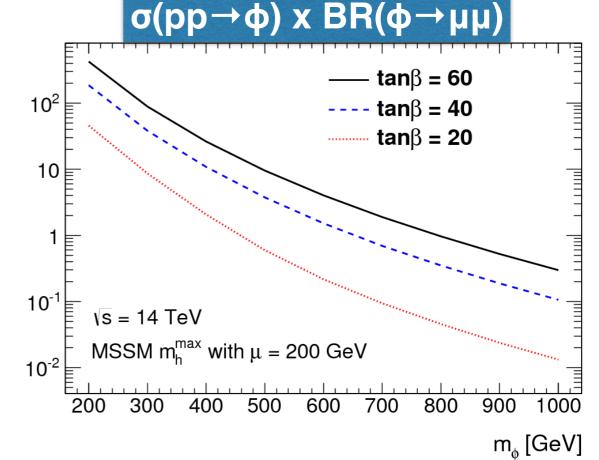
$$(1)$$


- · Parameters are real (CP-conservation)
- · Only soft Z_2 symmetry breaking (no FCNC at tree-level) $\Rightarrow \lambda_6 = \lambda_7 = 0$
 - \cdot additional freedom to choose the form of the Z_2 symmetry
- \cdot sin(β - α) \rightarrow 1 is the SM limit


	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$			
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin \alpha /\cos \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha /\cos \beta$
ξ_h^ℓ	$\cos \alpha / \sin \beta$	$-\sin \alpha /\cos \beta$	$-\sin \alpha /\cos \beta$	$\cos \alpha / \sin \beta$
$oldsymbol{\xi}_H^u$	$\sin \alpha / \sin \beta$			
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
ξ_H^ℓ	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$
ξ^u_A	$\cot \beta$	$\cot \beta$	$\cot \beta$	$\cot \beta$
ξ_A^d	$-\cot \beta$	$\tan eta$	$-\cot \beta$	$\tan \beta$
ξ_A^ℓ	$-\cot \beta$	$\tan eta$	$\tan \beta$	$-\cot \beta$

2HDM cross sections and BR

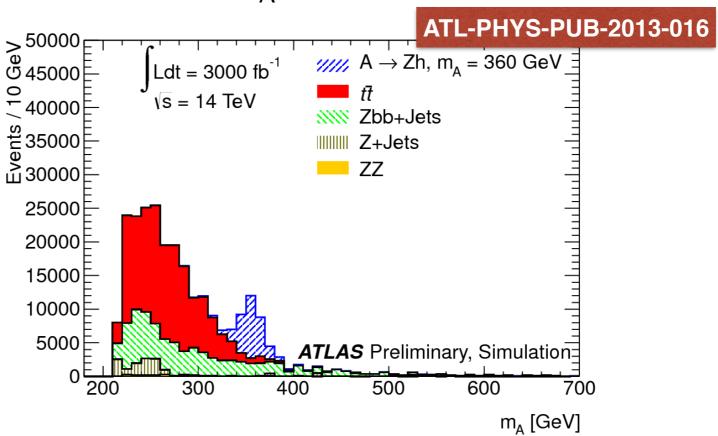
$\sigma(gg \rightarrow A) \times BR(A \rightarrow Zh)$


 \times BR [fb]

- \cdot m_h=125GeV
- \cdot $m_A=m_H=m_H^{\pm}$
- Narrow width
- gluon fusion cross section known to up to NNLO QCD accuracy
- b-associated production
 - · Type I: negligible
 - TypeII: ~25% of gluonfusion for tanβ=3
 - $m_{12}^2 = m_A^2 \tan \beta / (1 \tan^2 \beta)$

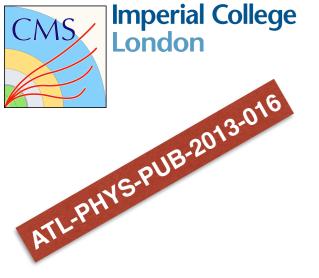
- m_hmax scenario is used to derive conservative limits on (m_A,tanβ)
- gluon-fusion and bassociated cross section are added
- cross sections for CP-even H and CPodd A are added (mass degeneracy assumed)

m_hmax scenario


 $m_t = 173.2 \; {
m GeV}, \ M_{
m SUSY} = 1000 \; {
m GeV}, \ \mu = 200 \; {
m GeV}, \ M_2 = 200 \; {
m GeV}, \ X_t^{
m OS} = 2 \, M_{
m SUSY} \; ({
m FD \; calculation}), \ X_t^{
m \overline{MS}} = \sqrt{6} \, M_{
m SUSY} \; ({
m RG \; calculation}), \ A_b = A_{ au} = A_t, \ m_{ ilde{g}} = 1500 \; {
m GeV}, \ M_{ ilde{l}_3} = 1000 \; {
m GeV} \; .$

A→Zh→Ilbb (ATLAS)

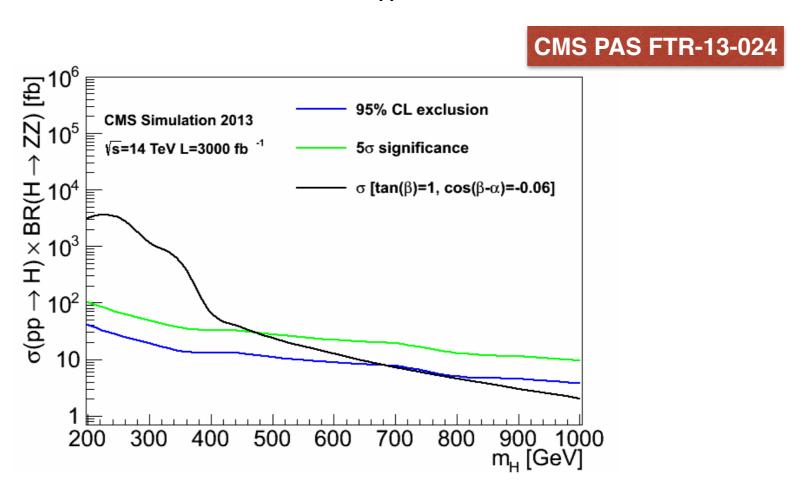
- · GEN level quantity are smeared according to parameterised response studied on full-sim (GEANT)
 - · <140> pile-up assumed
- $\cdot m_A^{\text{rec}} = m_{\text{IIbb}} m_{\text{II}} m_{\text{bb}} + m_Z^0 + m_h^0$ is used
- · $\Delta R(bb)$ cut, m_A -dependent
- · 30% systematic on backgrounds and signal yields (uncorrelated)
- · Asymptotic CL_S is used
- · Binned likelihood fit in bins of m_A



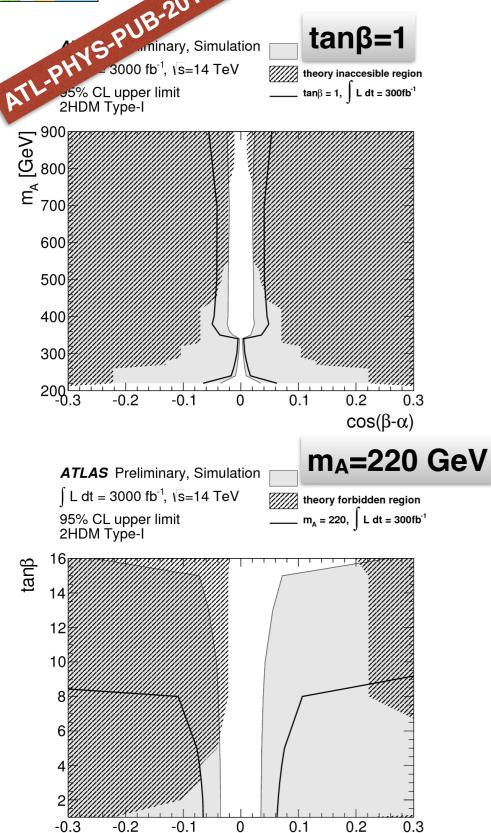
$A \rightarrow Zh \rightarrow Ilbb$ (CMS)

- · Delphes used for detector response simulation
 - <140> pile-up assumed
- Tau-veto to maintain orthogonality with A→Zh→IITT
- · $|\Delta \varphi(l_1,l_2)|$, $p_T(Z)$, $p_T(Z)/p_T(h)$ cuts applied to further discriminate against background
- · Binned likelihood fit in bins of mA

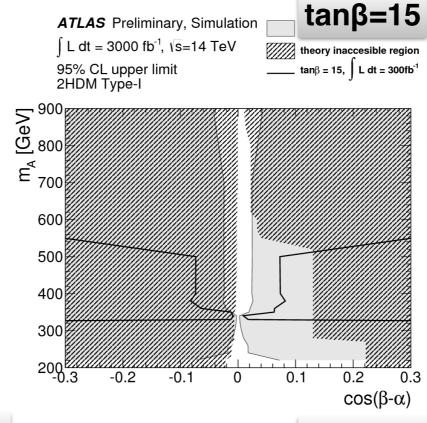
- GEN level quantity are smeared according to parameterised response studied on full-sim (GEANT)
 - <140> pile-up assumed
- No systematic uncertainty is considered
- Asymptotic CL_S is used


$H \rightarrow ZZ \rightarrow 4I (ATLAS)$

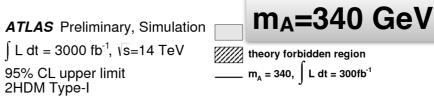
- ATL-PHYS-PUB-2013-016
 - GEN level quantity are smeared according to parameterised response studied on full-sim (GEANT)
 - <140> pile-up assumed
 - Same systematic uncertainty as in Run1 is assumed
 - · The natural width is the same as for a SM Higgs
 - The Higgs lineshape is calculated using the complex-pole-scheme
 - · Interference with the background is taken into account in the background systematics
 - · Asymptotic CL_S is used

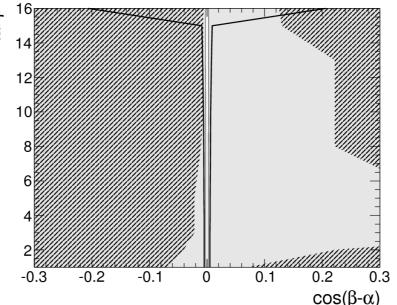


$H \rightarrow ZZ \rightarrow 4I$ (CMS)

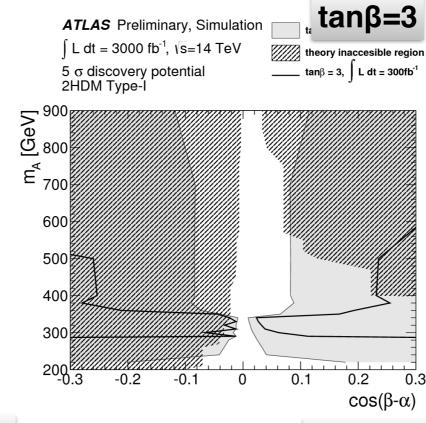

- · Delphes used for detector response simulation
 - · <140> pile-up assumed
- · Narrow width is assumed
 - · good approximation in the parameter space allowed by coupling fit
- · MSSM-like scenario: $\lambda_{5,6,7}=0$
- · 20% systematic on the background
- · Binned likelihood fit in bins of m_H

A→Zh→Ilbb: 2HDM Type I

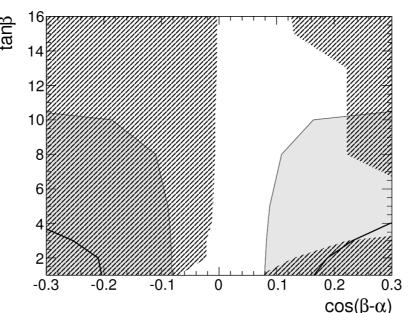


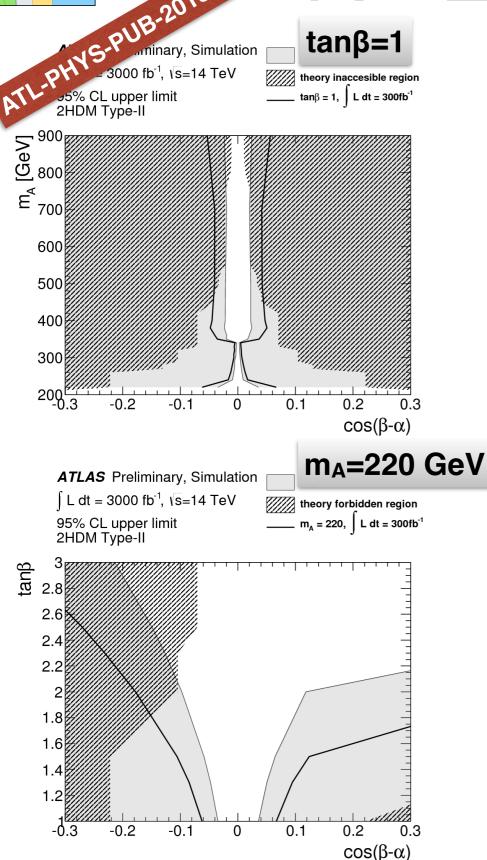

 $cos(\beta-\alpha)$

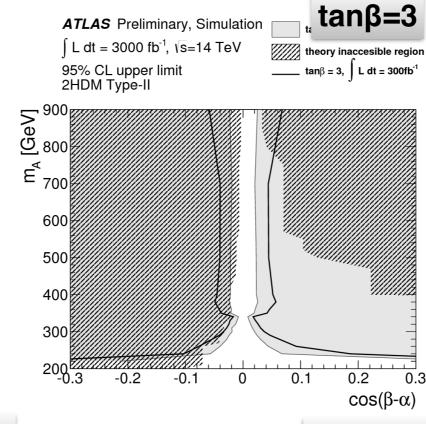
Best sensitivity at ~340 GeV (<~ 2m_{top})


- Higgs potential stability
- tree-level unitarity of Higgs scattering
- perturbativity of the quartic

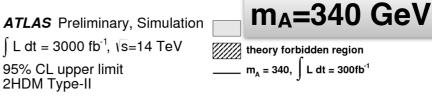
A→Zh→Ilbb: 2HDM Type I

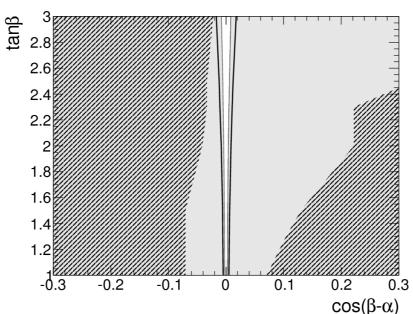

 $\cos(\beta-\alpha)$


Best sensitivity at ~340 GeV (<~ 2m_{top})

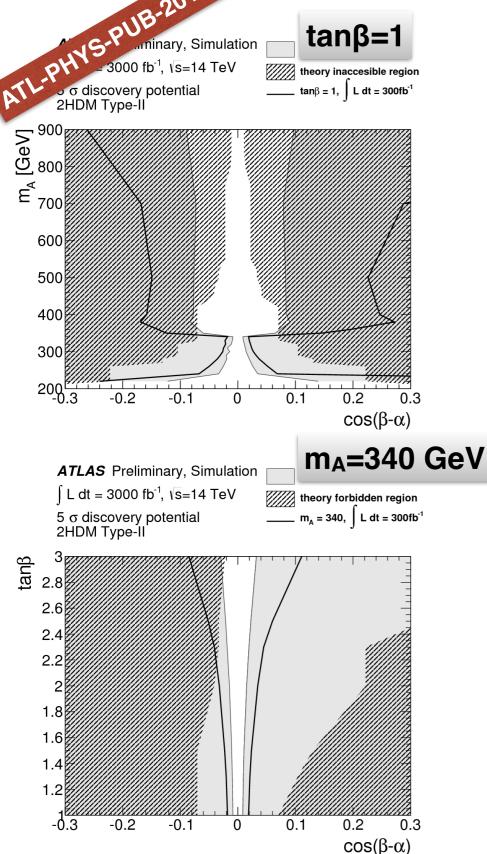

ATLAS Preliminary, Simulation $\int L dt = 3000 \text{ fb}^{-1}$, $\sqrt{s} = 14 \text{ TeV}$ theory forbidden region $m_A = 400$, $\int L dt = 3000 \text{ fb}^{-1}$ 2HDM Type-I

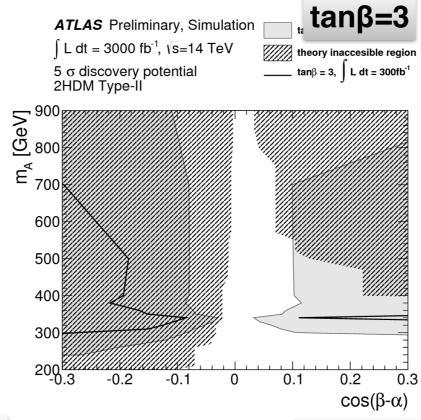
- Higgs potential stability
- tree-level unitarity of Higgs scattering
- perturbativity of the quartic


A→Zh→Ilbb: 2HDM Type II

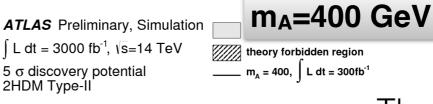


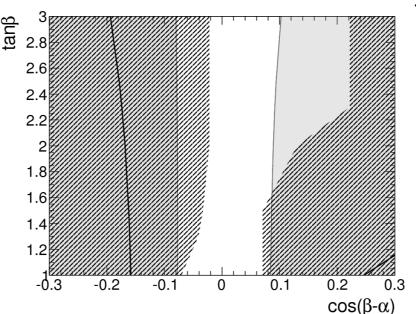
Best sensitivity at ~340 GeV (<~ 2m_{top})





- Higgs potential stability
- tree-level unitarity of Higgs scattering
- perturbativity of the quartic


A→Zh→Ilbb: 2HDM Type II



Best sensitivity at ~340 GeV (<~ 2m_{top})

- Higgs potential stability
- tree-level unitarity of Higgs scattering
- perturbativity of the quartic

Coupling accuracy

3	Model	Coupling Description		300	Expected Ofb ⁻¹	precision 300	00 fb ⁻¹
	Wiodei	parameter	Description	All syst.	w/o theory	All syst.	w/o theory
1	MCHM4,	μ_h	Overall signal strength	8.5%	4.8%	6.5%	3.4%
1	EW singlet	$\kappa = \sqrt{\mu_h}$	Universal coupling	4.2%	2.4%	3.2%	1.7%
2	MCHM5,	κ_V	Vector boson (W, Z) coupling	4.3%	2.5%	3.3%	1.7%
	2HDM Type I	KF	Fermion $(t, b, \tau, \mu,)$ coupling	8.8%	7.1%	5.1%	3.2%
		κ_V	Vector boson coupling	5.9%	5.3%	3.7%	3.0%
3	2HDM Type II, MSSM	K _u	Up-type fermion (t, c, u) coupling	8.9%	7.2%	5.4%	3.4%
		κ_d	Down-type fermion (b, τ, μ, \dots) coupling	12%	12%	6.7%	6.1%
		K _V	Vector boson coupling	4.3%	2.5%	3.3%	1.7%
		κ_q	Quark coupling	11%	7.8%	6.6%	3.6%
4	2HDM Type III	κ_l	Lepton (τ, μ, e) coupling	10%	9.3%	6.0%	5.1%
		κ _V	Vector boson coupling	7.9%	7.6%	4.3%	3.7%
5	2HDM Type IV	$\kappa_{u',l}$	Up-type quark (t, c, u) & lepton coupling	11%	10%	5.6%	4.5%
		$\kappa_{d'}$	Down-type quark (b, s, d) coupling	21%	21%	11%	9.6%
		κ _Z	Z boson coupling	8.1%	7.8%	4.3%	3.8%
		κ_W	W boson coupling	8.5%	8.1%	4.8%	3.9%
		κ_t	t quark coupling	14%	11%	8.2%	5.3%
6	Mass scaling	κ_b	b quark coupling	23%	22%	12%	10%
0	parametrization	κ_{τ}	au lepton coupling	14%	13%	9.8%	8.7%
		κ_{μ}	Muon coupling	21%	21%	7.3%	7.0%
		κ_g	Gluon effective coupling	8.9%	6.3%	6.7%	2.8%
7	Higgs ports!	Κγ	Photon effective coupling	4.9%	4.7%	2.1%	1.7%
7	Higgs portal	$\kappa_{Z\gamma}$	$Z\gamma$ effective coupling	23%	23%	14%	14%
		BR_i	Invisible branching ratio	<22%	<20%	<14%	<10%

Simplified MSSM

- Radiative corrections are extracted by evaluating the mass-mixing matrix of the neutral CP-even bosons at $m_h = 125 \text{ GeV}$
- The components of the h eigenvector are used to rewrite the couplings as a function of m_A , $tan\beta$
- · Loop corrections due to stops are neglected (<5% for $m_{stop} > 500$ GeV)
- · Universality of down type fermion is assumed $(k_b=k_\tau, etc.)$
- \cdot b-associated production is accounted for as a correction scaling with $y_b{}^2$
 - assuming same differential distribution as for gluon fusion

Higgs portal

- Invisible decay BR of the Higgs is all due to decay to a pair of WIMPs X
 - $\cdot m_X < 0.5*m_h$
 - give conservative limits on the DM-Higgs couplings
- DM-nucleon cross sections are expressed as a function of the Higgs-DM couplings for different DM spin hypothesis

scalar
$$S$$
: $\sigma_{S-N} = \lambda_{hSS}^2 \frac{m_N^4 f_N^2}{16\pi m_h^4 (m_S + m_N)^2}$
fermion f : $\sigma_{f-N} = \frac{\lambda_{hff}^2}{\Lambda^2} \frac{m_N^4 f_N^2 m_f^2}{4\pi m_h^4 (m_f + m_N)^2}$
vector V : $\sigma_{V-N} = \lambda_{hVV}^2 \frac{m_N^4 f_N^2}{16\pi m_h^4 (m_V + m_N)^2}$,

f_N is the Higgs-nucleon form factor (lattice QCD)

Excluded cross section is proportional to the limit on BR(H→inv)