# Higgs Hunting 2015 HL-LHC Session: Discussion



Joe Incandela University of California Santa Barbara 1 August, 2015 50 pb \* 3000 fb<sup>-1</sup> = 150 M Higgs produced per experiment

## New schedule for Long Shutdowns and Accelerator perspective for luminosity



<sup>\* &</sup>quot;Ultimate luminosity" is a design specification - effective integrated luminosity is not limited by instantaneous luminosity - potentially 30% more fb<sup>-1</sup>/year

## Precision on couplings



## All systematic uncertainties are left unchanged

#### Scenario 2:

- Theoretical uncertainties scaled by 1/2
- Other systematic uncertainties scaled by √(int. lumi.)

- Without changes from Run 1, theory uncertainties + PDFs dominate...
  - When CMS first proposed scenario
     2, scaling theoretical errors by ½
     was not so well accepted
- Indeed, Run 1 was made possible by a huge improvement in theory uncertainties that had taken many years!

s Hunting 2015  $-\,$  Orsay  $\,-$  Preparing for the HL-LHC - Joe Incandela (UC

### Theory and simulation "Next-to..." revolution:

- Standard Model and Higgs Production
  - Theory and simulation "Next-to..." revolution:
    - Unprecedented precision
      - Calculations at Next-to-Leading-Order (NLO) and some at Next-to-NLO (NNLO)
      - Parton Distribution Function sets at NNLO



Precision over >7 orders

At a depth of 6 orders ...



## Situation today

This conference\*

Orsay - Preparing for the HL-LHC - Joe Incandela (UCSB)

- Inclusive ggH to N<sub>3</sub>LO (+N<sub>3</sub>LL soon)
- MC NLO+PS, N2LO+PS coming in time?
- Much promise in off-shell physics:
  - Not clear if/how to get at it?

#### ggH at NNLO+PS (with MiNLO)



 approximate inclusion of t and b mass effects also studied [Hamilton,Nason,Zanderighi '15]

#### N3LL threshold resummation







15/19

[Hamilton, Nason, ER, Zanderighi '13]

- Calculations appear to be progressing faster than expected!
- PDFs too
  - ½ scaling no longer looks impossible.
  - Can we have another factor of 2 please? ©

#### But...

- $lpha_{
  m s}$  may be a limiting factor
  - More precision needed. How?

### PDFs: RECENT PROGRESS HIGGS IN GLUON FUSION





- MAJOR UPGRADES FROM ALL GLOBAL FITTING GROUPS: NNPDF2.3 $\rightarrow$ 3.0 (10/2015); MSTW08  $\rightarrow$  MMHT14 (12/2015); CT10  $\Rightarrow$  CT14 (06/2015)
- METHODOLOGICAL IMPROVEMENTS: CLOSURE TESTS (NNPDF); EXTENDED PARAMETRIZATIONS (CT, MMHT)
- LHC-I DATA INCLUDED
- PDF UNCERTAINTY ON HIGGS PRODUCTION DOWN TO ABOUT 2% ENVELOPE NO LONGER NECESSARY

Is 5% the limit? Is it enough?





## Key motivators & design drivers



- Allows measurement of Higgs selfcoupling λ<sub>HHH</sub>
- CMS Z<sub>0</sub> (3000 fb<sup>-1</sup>): 1.9σ for bbγγ +
   bbττ
  - 54% exp. uncertainty in signal yield
- ATLAS  $Z_0$  ( $\lambda_{HHH} / \lambda_{SM} = 1$ ): 1.3 $\sigma$

- DiHiggs crucial
  - Experiment studies so far fall slightly short
    - What are the limiting factors?
    - What more is needed?
      - Combining many/all channels alla Tevatron Higgs searches? Machine learning?
      - Better instrumentation?
        - E.g. timing for pileup? (i.e. neutral component)
- Design drivers
  - What other physics –BSM in particular – should be driving the designs?
    - Single Higgs already pushes the detectors, triggers hard..
  - NMSSM?
    - See Tony Gherghetta's talk



70MCHF descope of the detectors? Amortized over the period (2015,2038)~ 0.3% of CERN's budget