# Non-Standard Light- (Quark) Yukawas and the Higgs Portal

Fady Bishara

Higgs Hunting 2015

July 31<sup>st</sup>, 2015



### Motivation

- Fits to Higgs data allows large deviations from SM light-quark Yukawa couplings.
- However, it is difficult to realize such large deviations in concrete models.
- $\triangleright$  On the other hand, in Higgs portal DM models, direct detection rates are sensitive to the light-quark Yukawa couplings  $\rightarrow$  a useful probe.

### Global fit to the Higgs data

Allowing one light-Yukawa to float at a time gives

Kagan, Perez, Petriello, Soreq, Stoynev, and Zupan [arXiv:1406.1722]

$$|\kappa_u| < 0.98 m_b/m_u \ |\kappa_d| < 0.93 m_b/m_d \ |\kappa_s| < 0.70 m_b/m_s$$

- However, such large values are not likely to be obtained in a complete model.

#### Framework

ightriangleq In the SM,  $y_f = \sqrt{2} m_f / v_W$  but in general could have

$$\mathcal{L}_{\mathrm{eff,q}} = \underbrace{\frac{m_q}{v_W} \bar{q} q h}_{\text{CP Conserving}} - i \tilde{\kappa}_q \frac{m_q}{v_W} \bar{q} \gamma_5 q h}_{\text{CP Violating}} - \underbrace{\left[ \left( \kappa_{qq'} + i \tilde{\kappa}_{qq'} \right) \bar{q}_L q_R' h + \mathrm{h.c.} \right]}_{\Re: \text{CPC}}$$

where, in the SM,  $\kappa_q = 1$  while  $\tilde{\kappa}_q = \kappa_{qq'} = \tilde{\kappa}_{qq'} = 0$ .

Dery, Efrati, Nir, Soreq, & Susič [arXiv:1408.1371]; Dery, Efrati, Hiller, Hochberg, & Nir [arXiv:1304.6727]; Dery, Efrati, Hochberg, & Nir [arXiv:1302.3229]

# Down-type flavor-diagonal Yukawas in a selection of models

| Model | $\kappa_{b}$                                                                                                  | $\kappa_{s(d)}/\kappa_b$                                          | $	ilde{\kappa}_b/\kappa_b$                                      | $	ilde{\kappa}_{s(d)}/\kappa_b$                                  |
|-------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| SM    | 1                                                                                                             | 1                                                                 | 0                                                               | 0                                                                |
| NFC   | $V_{hd} v_W / v_d$                                                                                            | 1                                                                 | 0                                                               | 0                                                                |
| MSSM  | $-\sinlpha/\coseta$                                                                                           | 1                                                                 | 0                                                               | 0                                                                |
| GL    | $\simeq$ 3                                                                                                    | $\simeq 5/3(7/3)$                                                 | O(1)                                                            | $\mathcal{O}(\kappa_{s(d)}/\kappa_b)$                            |
| GL2   | $-\sinlpha/\coseta$                                                                                           | $\simeq$ 3(5)                                                     | $\mathcal{O}(\epsilon^2)$                                       | $\mathcal{O}(\kappa_{s(d)}/\kappa_b)$                            |
| MFV   | $1 + \frac{\operatorname{Re}(a_d v_W^2 + 2c_d m_t^2)}{\Lambda_2^2}$                                           | $1 - \frac{2\operatorname{Re}(c_d)m_t^2}{\Lambda^2}$              | $\frac{\Im(a_d v_W^2 + 2c_d m_t^2)}{\Lambda^2}$                 | $\frac{\Im(a_d v_W^2 + 2c_d   V_{ts(td)}  ^2 m_t^2)}{\Lambda^2}$ |
| RS    | $1 - \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$                                                 | $1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$     | $1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK_2}^2}\bar{Y}^2\right)$ | $1 + \mathcal{O}\left(\frac{v_W^2}{m_{KK}^2}\bar{Y}^2\right)$    |
| pNGB  | $1 + \mathcal{O}\left(\frac{v_W^2}{f^2}\right) + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v_W^2}{M_*^2}\right)$ | $1 + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v_W^2}{M_*^2}\right)$ | $\mathcal{O}\left(y_*^2\lambda^2\frac{v_W^2}{M_*^2}\right)$     | $\mathcal{O}\left(y_*^2\lambda^2\frac{v_W^2}{M_*^2}\right)$      |

## Up-type flavor-diagonal Yukawas in a selection of models

| Model            | κţ                                                                                                               | $\kappa_{c(u)}/\kappa_t$                                          | $	ilde{\kappa}_t/\kappa_t$                                  | $	ilde{\kappa}_{c(u)}/\kappa_t$                             |
|------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| SM               | 1                                                                                                                | 1                                                                 | 0                                                           | 0                                                           |
| NFC              | $V_{hu}v_W/v_u$                                                                                                  | 1                                                                 | 0                                                           | 0                                                           |
| MSSM             | $\cos lpha/\sin eta$                                                                                             | 1                                                                 | 0                                                           | 0                                                           |
| GL               | $1+\mathcal{O}(\epsilon^2)$                                                                                      | $\simeq$ 3(7)                                                     | $\mathcal{O}(\epsilon^2)$                                   | $\mathcal{O}(\kappa_{c(u)})$                                |
| GL2 <sup>1</sup> | $\cos lpha/\sin eta$                                                                                             | $\simeq$ 3(7)                                                     | $\mathcal{O}(\epsilon^2)$                                   | $\mathcal{O}(\kappa_{c(u)})$                                |
| MFV              | $1+rac{Re(a_{\!\scriptscriptstyle U}v_{\!\scriptscriptstyle W}^2+2b_{\!\scriptscriptstyle U}m_t^2)}{\Lambda^2}$ | $1-rac{2\mathrm{Re}(b_u)m_t^2}{\Lambda^2}$                       | $\frac{\Im(a_u v_W^2 + 2b_u m_t^2)}{\Lambda^2}$             | $\frac{\Im(a_{u}v_{W}^{2})}{\Lambda^{2}}$                   |
| RS               | $1-\mathcal{O}\!\left(rac{v_W^2}{m_{KK}^2}ar{Y}^2 ight)$                                                        | $1 + \mathcal{O}\left(rac{v_W^2}{m_{KK}^2}ar{Y}^2 ight)$         | $1 + \mathcal{O}\Big(rac{v_W^2}{m_{KK}^2}ar{Y}^2\Big)$     | $1 + \mathcal{O}\Big(rac{v_W^2}{m_{KK}^2}ar{Y}^2\Big)$     |
| pNGB             | $1 + \mathcal{O}\left(\frac{v_W^2}{f^2}\right) + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v_W^2}{M_*^2}\right)$    | $1 + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v_W^2}{M_*^2}\right)$ | $\mathcal{O}\left(y_*^2\lambda^2\frac{v_W^2}{M_*^2}\right)$ | $\mathcal{O}\left(y_*^2\lambda^2\frac{v_W^2}{M_*^2}\right)$ |

<sup>&</sup>lt;sup>1</sup> For a detailed study of this model see: Bauer, Carena, & Gemmler[arXiv:1506.01719]

### Higgs portal DM

$$\mathcal{L}_{\chi} = \begin{cases} g_{\chi} \chi^{\dagger} \chi H^{\dagger} H \,, & \text{scalar DM;} \\ g_{\chi} \frac{1}{\Lambda} \bar{\chi} \chi H^{\dagger} H + i \tilde{g}_{\chi} \frac{1}{\Lambda} \bar{\chi} \gamma_{5} \chi H^{\dagger} H \,, & \text{fermion DM;} \\ \frac{g_{\chi}}{2} \chi^{\mu} \chi_{\mu} H^{\dagger} H, & \text{vector DM.} \end{cases}$$

 $\triangleright$  After EWSB, the  $H^{\dagger}H$  operator gives

$$H^{\dagger}H = \frac{1}{2}(v_W^2 + 2v_W h + h^2),$$

## Sensitivity of direct detection to light Yukawas

Low energy effective Lag.

$$\mathcal{L} \supset g_{\chi} \frac{v_W}{m_h^2} \chi^{\dagger} \chi \, \mathcal{S}_q$$

Scalar current

$$\mathcal{S}_q = \sum_{q \in \{u,d,s\}} rac{m_q}{\mathsf{v}_W} ar{q} q - \mathcal{C}_g rac{lpha_{s}}{\mathsf{12}\pi \mathsf{v}_W} G^a_{\mu 
u} G^{a \mu 
u} + \mathsf{CP} \; \mathsf{odd}$$

- $hd \ \$  Effective coupling to nucleons is given by  $f_{\cal S}^{(N)} \equiv \langle N|{\cal S}_q|N
  angle$
- ▶ Finally,

$$f_{S}^{(p)} = \frac{m_{W}}{v_{W}} \left[ 1.8\kappa_{u} + 3.4\kappa_{d} + 4.3\kappa_{s} + 6.7(\kappa_{c} + \kappa_{b} + \kappa_{t}) \right] \times 10^{-2}$$

$$f_{S}^{(n)} = \frac{m_{W}}{v_{W}} \left[ 1.6\kappa_{u} + 3.8\kappa_{d} + 4.3\kappa_{s} + 6.7(\kappa_{c} + \kappa_{b} + \kappa_{t}) \right] \times 10^{-2}$$

### Sensitivity of direct detection to light Yukawas – results

The direct detection cross-section

$$\sigma_{\sf d.d.} \propto \left[ Z \, f_{\mathcal{S}}^{(p)} + (A-Z) \, f_{\mathcal{S}}^{(n)} 
ight]^2$$

where A is the mass number and Z is the atomic number of the nucleus



N.B.: for a much more realistic way to probe light-quark Yukawa see Frank Petriello's talk from yesterday [arXiv:1406.1722].

### Summary

- → Higgs data is compatible with large deviations in light quark Yukawa couplings.
- > The expected deviations in a selection of models was presented.
- On a more speculative note, direct detection of Higgs portal DM might give a handle on light quark Yukawas.