Contexte et Motivations	Caractérisation & dispositif expérimental	Résultats	Conclusion	Références
000	000	0000		

Développement d'un injecteur pour l'accélération laser-plasma multi-étages

T.L. Audet¹, M. Hansson², P. Lee¹, F.G. Desforges¹, G. Maynard¹, S. Dobosz Dufrénoy³, R. Lehe⁴, J.-L. Vay⁴, B. Aurand², A. Persson², I. Gallardo-González², A. Maitrallain³, P. Monot³, C.-G. Wahlström², O. Lundh², B. Cros¹

¹LPGP, CNRS, Univ Paris Sud, Université Paris-Saclay, 91405, Orsay, France
 ²Department of Physics, Lund University, P.O. Box 118, S-22100 Lund, Sweden
 ³LIDyL, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
 ⁴Lawrence Berkeley National Laboratory, Berkeley, California, 94720 U.S.A.

Journées accélérateurs, Roscoff, 5 - 7 Octobre 2015

Contexte et Motivations	Caractérisation & dispositif expérimental 000	Résultats 0000	Conclusion	Références
Plan				

- Accélération laser plasma multi-étages
- Injecteur d'électrons
- Injection induite par ionisation

Caractérisation de la cible et dispositif expérimental

- ELectron Injector for compact Staged high energy Accelerator (ELISA)
- Caractérisation de la cible
- Dispositif expérimental au LLC

Résultats

- Position du plan focal
- Evolution du laser et paquets d'électrons

 Contexte et Motivations
 Caractérisation & dispositif expérimental
 Résultats
 O

 • 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Le multi-étages pour dépasser les limitations de l'accélération laser-plasma (ALP)

Potentiel de l'ALP

- Forts champs accélérateurs : $|\vec{E}| \sim 1 100 \text{ GV/m}$
- Compacité
- Paquets ultra-courts : $\sim 10 \text{ fs}$
- Faible émittance

Références

Caractérisation & dispositif expérimental

Résultats 0000 sion F

Références

Le multi-étages pour dépasser les limitations de l'accélération laser-plasma (ALP)

Potentiel de l'ALP

- Forts champs accélérateurs : $|\vec{E}| \sim 1 100 \text{ GV/m}$
- Compacité
- Paquets ultra-courts : $\sim 10 \text{ fs}$
- Faible émittance

Limitations

- Déphasage des électrons par rapport à l'onde de plasma L_φ
- Epuisement de l'énergie laser *L*_D
- Diffraction du laser *L_R*

Caractérisation & dispositif expérimental

Résultats 0000 ision

Références

Le multi-étages pour dépasser les limitations de l'accélération laser-plasma (ALP)

Potentiel de l'ALP

- Forts champs accélérateurs : $|\vec{E}| \sim 1 - 100 \text{ GV/m}$
- Compacité
- Paquets ultra-courts : $\sim 10 \text{ fs}$
- Faible émittance

Limitations

- Déphasage des électrons par rapport à l'onde de plasma L_φ
- Epuisement de l'énergie laser *L*_D
- Diffraction du laser L_R

Solution : multi-étages

- Injecteur : régime non-linéaire ; énergie modeste (50-100 MeV) mais contrôlable
- Second stage : régime linéaire ; augmentation de l'énergie
- Ligne de transport magnétique : Couplage des deux étages Voir présentation de S. Dobosz Dufrénoy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Caractérisation & dispositif expérimental

Résultats 0000 sion I

Références

Le multi-étages pour dépasser les limitations de l'accélération laser-plasma (ALP)

Potentiel de l'ALP

- Forts champs accélérateurs : $|\vec{E}| \sim 1 - 100 \text{ GV/m}$
- Compacité
- Paquets ultra-courts : $\sim 10 \text{ fs}$
- Faible émittance

Limitations

- Déphasage des électrons par rapport à l'onde de plasma L_φ
- Epuisement de l'énergie laser *L*_D
- Diffraction du laser L_R

Solution : multi-étages

- Injecteur : régime non-linéaire ; énergie modeste (50-100 MeV) mais contrôlable
- Second stage : régime linéaire ; augmentation de l'énergie
- Ligne de transport magnétique : Couplage des deux étages Voir présentation de S. Dobosz Dufrénoy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contexte et Motivations	Caractérisation & dispositif expérimental	Résultats	Conclusion	Références
000	000	0000		

Paramètres de contrôle des paquets d'électrons

L'injecteur adapté

- La plus grande charge possible dans la gamme 50-100 MeV
- Dispersion en énergie : ~ 1%
- Divergence : 1-10 mrad
- Stable et reproductible

Contexte et Motivations	Caractérisation & dispositif expérimental	Résultats	Conclusion	Références
000	000	0000		

Paramètres de contrôle des paquets d'électrons

L'injecteur adapté

- La plus grande charge possible dans la gamme 50-100 MeV
- Dispersion en énergie : ~ 1%
- Divergence : 1-10 mrad
- Stable et reproductible

Stabilité & reproductibilité

- Fluctuations de densité → Cellule de gaz pour le confinement
- Fluctuations du pointé laser → Stabilisation du pointé [Genoud et al., 2011]
- Variations d'énergie laser→ Contrôle tir à tir de l'énergie laser
- Profil d'intensité du laser → Correction du front d'onde

Contexte et Motivations ○●○	Caractérisation & dispositif expéri 000	mental Résultats	Conclusion	Références
Paramètres de	contrôle des pa	quets d'élect	trons	
L'injecteur adapté				
 La plus grand 	e charge possible dans	la gamme 50-100	MeV	
 Dispersion en 	• Dispersion en énergie : ~ 1%			
• Divergence :	1-10 mrad			
• Stable et repro	oductible			
Stabilité & reproc	luctibilité	Propriétés des p	paquets d'élect	rons
 Fluctuations de 	$\text{densit}\acute{e} \rightarrow \text{Cellule de}$	Densité élect	ronique du plasm	na
gaz pour le confinement				
 Fluctuations du Stabilisation du 2011] 	pointé laser \rightarrow pointé [Genoud et al.,	Composition mélange de g	du gaz \rightarrow Utilisa gaz	ation d'un

- Variations d'énergie laser→ Contrôle tir à tir de l'énergie laser
- Profil d'intensité du laser → Correction du front d'onde

• Position du plan focal et profil de densité

4 D b 4 A

 Paramètres de contrôle des paquets d'électrons L'injecteur adapté La plus grande charge possible dans la gamme 50-100 MeV Dispersion en énergie : ~ 1% Divergence : 1-10 mrad Stable et reproductible Stabilité & reproductibilité Fluctuations de densité → Cellule de gaz pour le confinement Fluctuations du pointé laser → Stabilisation du pointé [Genoud et al., 2011] Variations d'énergie laser→ Contrôle tia èt il de l'énergie laser → Contrôle tia èt il de l'énergie laser 	Contexte et Motivations $\circ \bullet \circ$	Caractérisation & dispositif expérie	mental Résultat	ts Conclusion	Références
 L'injecteur adapté La plus grande charge possible dans la gamme 50-100 MeV Dispersion en énergie : ~ 1% Divergence : 1-10 mrad Stable et reproductible Stabilité & reproductibilité Propriétés des paquets d'électrons Fluctuations de densité → Cellule de gaz pour le confinement Fluctuations du pointé laser → Stabilisation du pointé [Genoud et al., 2011] Variations d'énergie laser → Contrôle tie à tie de l'énergie laser 	Paramètres de	contrôle des pa	quets d'éle	ectrons	
 La plus grande charge possible dans la gamme 50-100 MeV Dispersion en énergie : ~ 1% Divergence : 1-10 mrad Stable et reproductible Stabilité & reproductibilité Propriétés des paquets d'électrons Fluctuations de densité → Cellule de gaz pour le confinement Fluctuations du pointé laser → Stabilisation du pointé [Genoud et al., 2011] Variations d'énergie laser → Contrôle tia de l'énergie laser → Contrôle 	L'injecteur adapté				
 Dispersion en energie : ~ 1% Divergence : 1-10 mrad Stable et reproductible Stabilité & reproductibilité Fluctuations de densité → Cellule de gaz pour le confinement Fluctuations du pointé laser → Stabilisation du pointé [Genoud et al., 2011] Variations d'énergie laser → Contrôle tip à tip de l'énergie laser → Contrôle 	• La plus grande	charge possible dans	la gamme 50-10	00 MeV	
 Stabilité & reproductibilité Fluctuations de densité → Cellule de gaz pour le confinement Fluctuations du pointé laser → Stabilisation du pointé [Genoud et al., 2011] Variations d'énergie laser → Contrôle tia de l'énergie laser → Contrôle 	 Dispersion en Divergence : 1 Stable et repro 	 Dispersion en énergie : ~ 1% Divergence : 1-10 mrad Stable et reproductible 			
 Fluctuations de densité → Cellule de gaz pour le confinement Fluctuations du pointé laser → Stabilisation du pointé [Genoud et al., 2011] Variations d'énergie laser → Contrôle tia de l'énergie laser → Contrôle 	Stabilité & reprod	uctibilité	Propriétés de	s paquets d'éle	ectrons
	 Fluctuations de gaz pour le conf Fluctuations du Stabilisation du 2011] Variations d'éne tin à tin de l'éner 	densité \rightarrow Cellule de inement pointé laser \rightarrow pointé [Genoud et al., ergie laser \rightarrow Contrôle	 Densité él Énergie la Composit mélange é Position d 	ectronique du pla ser ion du gaz → Uti le gaz u plan focal et pr	isma lisation d'un ofil de densité

 Profil d'intensité du laser → Correction du front d'onde

Utilisation de la technique d'injection induite par ionisation

Contexte et Motivations	Caractérisation & dispositif expérimental	Résultats	Conclusion	Références
000	000	0000		

Mécanisme de l'injection induite par ionisation

Principe

- Faible proportion d'un gaz lourd ajouté $(99\% H_2 + 1\% N_2)$
- Les électrons des couches externes de *N* se comportent comme ceux de *H*
- Les électrons des couches internes de *N* sont ionisés proches du pic d'intensité laser

Contexte et Motivations	Caractérisation & dispositif expérimental	Résultats	Conclusion	Références
000	000	0000		

Mécanisme de l'injection induite par ionisation

Principe

- Faible proportion d'un gaz lourd ajouté (99% $H_2 + 1\% N_2$)
- Les électrons des couches externes de *N* se comportent comme ceux de *H*
- Les électrons des couches internes de *N* sont ionisés proches du pic d'intensité laser

Avantages

- Augmentation de la charge [Desforges et al., 2014]
- Diminution de l'émittance transverse [McGuffey et al., 2010]
- Diminution du seuil de piégeage en *a*₀ [Pak et al., 2010, Chen et al., 2012]

Caractérisation & dispositif expérimental

Résultats

ision

Références

ELectron Injector for compact Staged high energy Accelerator (ELISA)

Cellule de gaz de longueur variable

- $P_{reservoir} = 100 \rightarrow 500 \text{ mbar}$ (~ 4.5 × 10¹⁸ \rightarrow 2 × 10¹⁹ cm⁻³)
- $L_{cell} = 0 \rightarrow 10 \text{ mm}$
- Gaz : 99% $H_2 + 1\% N_2$

Injecteur pour l'accélération laser-plasma multi-étages

Caractérisation & dispositif expérimental

Résultats

sion

Références

ELectron Injector for compact Staged high energy Accelerator (ELISA)

Cellule de gaz de longueur variable

• $P_{reservoir} = 100 \rightarrow 500 \text{ mbar}$ (~ 4.5 × 10¹⁸ \rightarrow 2 × 10¹⁹ cm⁻³)

•
$$L_{cell} = 0 \rightarrow 10 \text{ mm}$$

• Gaz:
$$99\%$$
 H₂ + 1% N₂

La densité dans la cellule a été caractérisée

Injecteur pour l'accélération laser-plasma multi-étages

Caractérisation & dispositif expérimental

Résultats

sion

Références

Les simulations fluides permettent de déterminer le profil de densité longitudinal

- Simulations fluides avec OpenFOAM et le solveur SonicFoam (transitoire, turbulent, capacité d'écoulements soniques)
- On a accès à la densité, aux vitesses, température... en fonction de l'espace et du temps
- Le profil de densité est normalisé aux valeurs mesurée expérimentalement par interférométrie
- Le profil de densité sera injecté dans les simulations PIC

T.L. Audet et al.

Caractérisation & dispositif expérimental

Résultats

sion

Références

Les simulations fluides permettent de déterminer le profil de densité longitudinal

- Simulations fluides avec OpenFOAM et le solveur SonicFoam (transitoire, turbulent, capacité d'écoulements soniques)
- On a accès à la densité, aux vitesses, température... en fonction de l'espace et du temps
- Le profil de densité est normalisé aux valeurs mesurée expérimentalement par interférométrie
- Le profil de densité sera injecté dans les simulations PIC

Résultats expérimentaux obtenus avec cette cellule

T.L. Audet et al.

Injecteur pour l'accélération laser-plasma multi-étages

Caractérisation & dispositif expérimental

Résultats	Conclusion	Références
0000		

Dispositif expérimental au LLC

Le laser du LLC

- Oscillateur Ti :Sapphire : $\lambda = 800 \text{ nm}$
- Durée d'impulsion : $\tau = 37 \pm 3$ fs
- Correction du front d'onde
- Tache focale : 17 μm (FWHM)

•
$$I_L = (3.1 \pm 0.8) \times 10^{18} \text{ W/cm}^2$$

• $a_0 = 1.2 \pm 0.1$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Caractérisation & dispositif expérimental

Résultats	Conclusion	Références
0000		

Dispositif expérimental au LLC

Le laser du LLC

- Oscillateur Ti :Sapphire : $\lambda = 800 \text{ nm}$
- Durée d'impulsion : $\tau = 37 \pm 3$ fs
- Correction du front d'onde
- Tache focale : 17 μm (FWHM)

•
$$I_L = (3.1 \pm 0.8) \times 10^{18} \text{ W/cm}^2$$

• $a_0 = 1.2 \pm 0.1$

Injecteur pour l'accélération laser-plasma multi-étages

Contexte et MotivationsCaractérisation & dispositif expérimentalRésultatsConclusionRéférences000000000000000000000000

La position du plan focal contrôle les propriétés des paquets d'électrons

- La cellule est déplacée le long de l'axe laser
- Les résultats expérimentaux sont comparés aux simulations PIC avec WARP CIRC Voir présentation de Patrick Lee

T.L. Audet et al.

Injecteur pour l'accélération laser-plasma multi-étages

La position du plan focal contrôle les propriétés des paquets d'électrons

- La cellule est déplacée le long de l'axe laser
- Les résultats expérimentaux sont comparés aux simulations PIC avec WARP CIRC Voir présentation de Patrick Lee

T.L. Audet et al.

 Contexte et Motivations
 Caractérisation & dispositif expérimental
 Résultats
 Conclusion
 Références

 000
 000
 000
 000
 000
 000
 000

La position du plan focal contrôle les propriétés des paquets d'électrons

- La cellule est déplacée le long de l'axe laser
- Les résultats expérimentaux sont comparés aux simulations PIC avec WARP CIRC Voir présentation de Patrick Lee

T.L. Audet et al.

Injecteur pour l'accélération laser-plasma multi-étages

 Contexte et Motivations
 Caractérisation & dispositif expérimental
 Résultats
 Conclusion
 Références

 000
 000
 000
 000
 000
 000
 000

La position du plan focal contrôle les propriétés des paquets d'électrons

La cellule est déplacée le long de l'axe laser

• Les résultats expérimentaux sont comparés aux simulations PIC avec WARP CIRC Voir présentation de Patrick Lee

T.L. Audet et al.

Contexte et MotivationsCaractérisation & dispositif expérimentalRésultatsConclusion000000000000000

La position du plan focal contrôle la distribution en énergie des électrons accélérés

Ce comportement peut être expliqué en observant l'évolution de a₀ pendant l'interaction

Références

Contexte et MotivationsCaractérisation & dispositif expérimentalRésultats
ooeConclusionRéférencesContexte et MotivationsConclusionRéférencesRéférencesRéférencesLa forme du profil de densité et la position relative du planfocal contrôlent la position d'injection

Caractérisation & dispositif expérimental

Résultats ○○●○ lusion Ré

Références

La forme du profil de densité et la position relative du plan focal contrôlent la position d'injection

Evolution du a₀ similaire pour toutes les positions → La focalisation et défocalisation du laser sont dominées par le profil de densité

Caractérisation & dispositif expérimental

Résultats ○○●○ sion Ré

Références

La forme du profil de densité et la position relative du plan focal contrôlent la position d'injection

Caractérisation & dispositif expérimental

Résultats	Conclusion	Référence
0000		

Modifications de la charge et énergie des paquets d'électrons avec la position du foyer

Caractérisation & dispositif expérimental

Résultats	Conclusion	Références
0000		

Modifications de la charge et énergie des paquets d'électrons avec la position du foyer

• L'injection induite par ionisation peut augmenter la charge d'un facteur 10

Caractérisation & dispositif expérimental

ésultats	Conclusion	Référer
000		

Modifications de la charge et énergie des paquets d'électrons avec la position du foyer

- C'injection induite par ionisation peut augmenter la charge d'un facteur 10
- La position du plan focal détermine le début de l'injection et la longueur d'accélération
 - Q_{tot} diminue lorsque $z_f > 1.15$ mm
 - *E_{max}* diminue lorsque *z_f* > 1.15 mm
 - La charge dans la gamme 60-70 MeV peut être optimisée

Caractérisation & dispositif expérimental

ésultats	Conclusion	Référe
000		

Modifications de la charge et énergie des paquets d'électrons avec la position du foyer

- L'injection induite par ionisation peut augmenter la charge d'un facteur 10
- La position du plan focal détermine le début de l'injection et la longueur d'accélération
 - Q_{tot} diminue lorsque $z_f > 1.15$ mm
 - E_{max} diminue lorsque $z_f > 1.15$ mm
 - La charge dans la gamme 60-70 MeV peut être optimisée

Dans cette gamme de puissance et de densité, le profil de densité et la position relative du plan focal contrôlent les propriétés des paquets d'électrons.

Contexte et Motivations 000	Caractérisation & dispositif expérimental 000	Résultats 0000	Conclusion	Références
Conclusion &	perspectives			

• La position du plan focal dans ce profil de densité détermine la position d'injection, la longueur d'injection et l'amplitude des champs accélérateurs.

イロト イポト イヨト イヨト

Contexte et Motivations 000	Caractérisation & dispositif expérimental 000	Résultats 0000	Conclusion	Références
Conclusion &	perspectives			

- La position du plan focal dans ce profil de densité détermine la position d'injection, la longueur d'injection et l'amplitude des champs accélérateurs.
- La charge dans une gamme d'énergie souhaitée pour un injecteur peut être optimisée.

Contexte et Motivations 000	Caractérisation & dispositif expérimental 000	Résultats 0000	Conclusion	Références
Conclusion &	perspectives			

- La position du plan focal dans ce profil de densité détermine la position d'injection, la longueur d'injection et l'amplitude des champs accélérateurs.
- La charge dans une gamme d'énergie souhaitée pour un injecteur peut être optimisée.

- Perspectives :
 - La charge peut encore être augmentée en ajustant d'autres paramètres : n_e, a₀ ou la proportion de N₂.
 - ► Travail sur les autres éléments de l'accélérateur multi-étages → Ligne de transport magnétique.

Contexte et Motivations	Caractérisation & dispositif expérimental	Résultats	Conclusion	Références
000	000	0000		

Merci de votre attention

イロト イポト イヨト イヨト

Contexte et Motivations	Caractérisation & dispositif expérimental	Résultats	Conclusion	Références
000	000	0000		

- M. Chen, E. H. Esarey, C. B. Schroeder, C. G. R. Geddes, and W. P. Leemans. Theory of ionization-induced trapping in laser-plasma accelerators. *Phys. Plasmas*, 19:033101, 2012. doi: 10.1063/1.3689922. URL http://link.aip.org/link/?PHP/19/033101/1.
- F. G. Desforges, B. S. Paradkar, M. Hansson, J. Ju, L. Senje, T. L. Audet, A. Persson, S. Dobosz Dufrénoy, O. Lundh, G. Maynard, P. Monot, J.-L. Vay, C.-G. Wahlström, and B. Cros. Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration. *Phys. Plasmas*, 21 :120703, 2014. doi : 10.1063/1.4903845. URL http://scitation.aip.org/content/aip/journal/pop/21/12/10. 1063/1.4903845.
- G. Genoud, F. Wojda, M. Burza, A. Persson, and C.-G. Wahlström. Active control of the pointing of a multi-terawatt laser. *Rev. Sci. Instrum.*, 82 : 033102, 2011. doi : 10.1063/1.3556438. URL http://link.aip.org/link/?RSI/82/033102/1.
- C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovskyand A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and A. V. Karpeev.

Contexte et Motivations	Caractérisation & dispositif expérimental	Résultats	Conclusion	Références
000	000	0000		

Ionization induced trapping in a laser wakefield accelerator. *Phys. Rev. Lett.*, 104 :025004, 2010. doi : 10.1103/PhysRevLett.104.025004. URL http://link.aps.org/doi/10.1103/PhysRevLett.104.025004.

 A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. *Phys. Rev. Lett.*, 104 :025003, 2010. doi : 10.1103/PhysRevLett.104.025003.
 URL http://link.aps.org/doi/10.1103/PhysRevLett.104.025003.