

Conditionnement et caractérisation de l'injecteur IFMIF à Rokkasho au Japon

R. GOBIN and Y. OKUMURA

et J-M Ayala¹, D. Bogard², B. Bolzon², G. Bourdelle², P. Cara³,
N. Chauvin², D. Chel², D. Gex³, P. Girardot², **R. Gobin²**, A. Gomes²,
P. Guiho², F. Harrault², R. Heidinger³, R. Ichimiya⁴, A. Ihara⁴, Y. Ikeda⁴,
A. Kasugai⁴, T. Kitano⁴, J. Knaster¹, M. Komata⁴, K. Kondo⁴,
D. Loiseau², Y. Lussignol², A. Marqueta¹, N. Misiara², S. Ohira⁴,
Y. Okumura¹, M. Perez¹, A. Roger², F. Senée², K. Shinto⁴,
H. Takahashi⁴, M. Valette²

¹⁾ IFMIF/EVEDA Project Team, Rokkasho, Aomori, Japan

²⁾ CEA/Saclay, France

³⁾ F4E, Fusion for Energy, BFD Department, Garching, Germany

⁴⁾ JAEA, Rokkasho Fusion Research Institute, Rokkasho, Japan

SFP Division Accélérateurs

celerateurs Octobre

Octobre 2015, Roscoff

| PAGE 1

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

- IFMIF project

Outline

- Injector design (ion source and LEBT)
- Transfer to Japan, Installation and Conditioning
- D⁺ beam characterization
- Security and Neutron production

IFMIF PROJECT

IFMIF IPAC

(International Fusion Materials Irradiation Facility)

2 D⁺ beams (125 mA - 40 MeV) will collide on a liquid Li target

DE LA RECHERCHE À L'INDUSTRIE

IFMIF PROJECT – VALIDATION PHASE LIPAC (Linear IFMIF Prototype Accelerator)

LIPAc = prototype for IFMIF which includes all critical accelerator components to be tested at nominal beam current

Installation and test in progress on the Rokkasho site in Japan

International project

Injector (CEA France) RFQ (INFN Italy) Cryomodule (CEA France) Diagnostics (CEA France, Ciemat Spain) MEBT + HEBT + Beam dump (Ciemat Spain) RF power, (Ciemat Spain, CEA France, SCK Belgium) Cryoplant (CEA France)

Octobre 2015, Roscoff

PAGE 4

Request for IFMIF Injector

IFMIF is the machine of all the challenges... and the challenge starts at the Injector level.

Requirements	Acceptance criteria	Comment	Photo P.Stroppa/
Particle type	D +	H ⁺ for injector conditioning	
Output energy Energy stability	100 keV ± 100 eV	Fixed by the RFQ acceptance	IFMIF Injector has been designed, built and tested at CEA/Saclay before shipment to Rokkasho site in Japan
Output D ⁺ current	140 mA	RFQ transmission $\ge 90\%$	
Species fraction D ⁺	≥95 %	At the output of the LEBT	
Beam current noise	≤2 % rms	At frequencies below ~1 MHz	
rms norm. emittance	$\leq 0.30 \pi$ mm mrad	At the output of the LEBT	
Duty factor	CW	Possibility of pulsed operation.	
Modulation capability	1 ms – CW @ 1-20 Hz	Typically	
Beam turn off time	< 20 μs	From 100% to 10% beam intensity	

SFP Division Accélérateurs

Octobre 2015, Roscoff

Magnetic and electrostatic simulations done with Opera from Vector Field[©]

SFP Division Accélérateurs

| PAGE 6 Octobre 2015, Roscoff

-2.

-3.

-4.

IFMIF

DE LA RECHERCHE À L'INDUSTRIE

IFMIF Injector Design

- Extracted current (PS drain current)
- Beam stopper current
- ACCT
- Profile with CID cameras
- Emittance (2 or 3 locations)
- Species fractions (Doppler shift and Electric)
- Neutron and gamma production

- Possible heavy gas injection

- Diagnostics despite limited

- 2 Turbopumps

space

Beam Characterization at Saclay

In November 2012, Beam characterization mostly done in pulsed mode (10 Hz), after the cone, with DC = 10, 30 and 50%; then continuous mode

An unprecedented D⁺ beam of 140 mA at 100 kV has been extracted and transported (with $I_{tot} = 175 \text{ mA}$ and $V_{puller} = -42 \text{ kV}$)

SFP Division Accélérateurs Octobre 2015, Roscoff

| PAGE 8

DE LA RECHERCHE À L'INDUSTRIE

Transfer to Japan

IEMIE \

IFMIF

- Mechanical re-installation, cabling, check-out took several months
- Conditioning (pumping, High Voltage, diagnostic tests, 1st plasma and 1st beam) has been performed with hydrogen beams
- Commissioning is done with beam characterization in 2 or 3 phases (1- between both solenoids, 2- after RFQ entrance cone, 3- source exit*) with H+ 50 keV beam and D+ 100 keV beam

* Decision concerning Phase 3, in the near future

- There is an optimum extraction current and an optimum intermediate electrode voltage to minimize the emittance.
- It was observed that the emittance increases with the duty cycle.
- It was also observed that the emittance growth is improved by increasing the gas flow rate or by injecting Kr gas into LEBT vacuum.

Emittance at 100keV D+ (PE = Φ 10mm)

<u>I</u>FMIF

Injector

IFMIF

Deuteron Intensity vs RF power

With Φ 10 mm plasma electrode and for 2 duty cycles (40 and 91 %)

With Φ 10 and 12 mm plasma electrode duty cycle = 9,5 %

SFP Division Accélérateurs Octobre

LEBT transmission (PE = Φ 12mm)

SFP Division Accélérateurs

Octobre 2015, Roscoff

| PAGE 15

Emittance comparison (PE = Φ 12mm)

SFP Division Accélérateurs

Octobre 2015, Roscoff

| PAGE 16

For safety reasons (very high power beam at high energy), the beam has to be switched off within few μ s (target < 20 μ s)

Tests have been done in continuous mode

Sairem© (magnetron provider) developed and provided a fast magnetron shutdown system based on HV switch and control board

All the RF chain is on HV platform

Blue: Fast Interlock at ground level Green: Beam Stopper current

Beam turns off in 10 µs

Neutron Production

- Measurements performed with the IFMIF injector H⁺ and D⁺ beams proved that the expected challenges start immediately at the source exit and in the low energy beam line.
- Beam power density has to be carefully controlled when using interceptive diagnostics. Non interceptive diagnostics are key elements for such high intensity beams.
- > Neutron production depends on the target material and temperature
- Beam characterization (PE = 12 mm) at 10% DC demonstrated the capability to inject 100 keV - 130 mA D+ beam into the RFQ with 0.27 pi.mm.mrad (rms, norm). emittance value.
- > 150 mA 100 keV D+ beam reached beam dump last week
- The goal of the beam commissioning is the characterization of a cw 100 keV - 140 mA D+ beam at the RFQ entrance.

Merci de votre attention

Vue du faisceau à Saclay

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 27 64| F. +33 (0)1 69 08 14 30

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

SFP Division Accélérateurs

Octobre 2015, Roscoff

PAGE 20

Direction Sciences de la Matière

Institut de Recherche sur les lois

Service Accélérateur, Magnétisme et

Fondamentales de l'Univers

DE LA RECHERCHE À L'INDUSTR

LEBT Diagnostics

- Thermocouples
- EMU Allison scanner designed for 15 kW continuous beam
- Residual Gas Analyzer
- 4 Grid Analyzer
- CID (hardened) cameras
- Spectrometer associated with optic fiber for **Doppler shift analysis**
- Faraday cup + Beam Stopper
- A large ACCT installed at the RFQ entrance with specific magnetic shielding

ACCT Bergoz ©

Beam Dump

| PAGE 22

DE LA RECHERCHE À L'INDUSTRIE

Focusing by Solenoid Coils

SFP Division Accélérateurs

Octobre 2015, Roscoff

Species fraction measurements Doppler shift analysis

Species fractions obtained with Doppler shift method for pulsed beam at 50% duty cycle

With primary reactions : $D^+ + D_2 \rightarrow D^* + D_2^+$ $D_2^+ + D_2 \rightarrow D + D^* + D_2^+$ $D_3^+ + D_2 \rightarrow 2D + D^* + D_2^+$

Taking into account the cross-sections, species fractions are given by:

$$\sigma_{D^{+}(100keV)} = 1,2 \times 10^{-18} \ cm^{2}$$

$$\sigma_{D^{+}_{2}(100keV)} = 14 \times 10^{-18} \ cm^{2}$$

$$\sigma_{D^{+}_{3}(100keV)} = 18,8 \times 10^{-18} \ cm^{2}$$

 $\Delta\lambda \approx \lambda_0 \frac{V}{C} \cos\theta$

$$D^{+} fraction = \frac{n_{D^{+}}}{n_{D^{+}} + n_{D_{2}^{+}} + n_{D_{3}^{+}}} \quad n_{D^{+}} \# \frac{I_{\text{line}}(D^{+})}{\sigma_{D^{+}}}$$

But other primary reactions exist: $D_n^+ + D_2 \rightarrow D^+ + ...$ So, 2nd and 3rd shifted peaks are the sum of several reactions \rightarrow Few % errors to be checked in more details

CALIBRATION OF ALL THE CURRENT DIAGNOSTICS

Self biasing of the Faraday Cup and the Beam Stop to suppress the secondary electrons.

- The FC and BS are self-biased by inserting resisters between the beam stop and the earth.
- The Faraday Cup current and the Beam Stop current decreases with the bias voltage. It seems that 100V would be necessary to suppress the secondary electrons.

Deuterium, 100keV, lext=76mA, 10% duty cycle

SFP Division Accélérateurs Oc

Octobre 2015, Roscoff

Emit20150803-1153

DE LA RECHERCHE À L'INDUSTR

Neutron and gamma production

(D,d) reaction lead to neutron production Saclay site radioprotection system: 1 neutron probe and 1 gamma probe inside the vault at respectively (2.2 m and 2.8 m from BS) and 2 neutron probes outside the vault

Several comments:

- Neutron prod. largely higher than Gamma prod. (x 100)
- Picks of Neutron and Gamma when EMU intercepts the beam
- Neutron prod. goes fast to zero after beam off
- Gamma prod. takes few 10 min to go to zero after beam off

Data record with Duty Cycle varying from 10 to 50%

Nov. 20th data record, mostly with 10% DC

Important to note:

Neutron and gamma productions do not proportionally increase with the DC (probably due to outgassing vs target temperature increase)

A neutron probe located at 50 cm from BS indicated neutron prod. value X 20