Monitorage Rapide de la Luminosité au Moyen de Capteurs en Diamant pour SuperKEKB

Comprendre le monde, construire l'avenir®

Journées Accélérateurs 2015, Roscoff Dima El Khechen, LAL, Orsay

Journées Accélérateurs 2015

Collaboration

LAL-ORSAY

Philip Bambade Alexandre Blin – Mech. Eng Dima El Khechen – PhD student Didier Jehanno – elec. Eng., DAQ Viacheslav Kubytskyi Yann Peinaud – Mech. Eng Cécile Rimbault

KEK

Yoshihiro Funakoshi – SuperKEKB Ken-Ichi Kanazawa – SuperKEKB/vacuum pipe Yukiyoshi Ohnishi – SuperKEKB/beam loss MC Yusuke Suetsugu – SuperKEK/vacuum pipe Sadaharu Uehara – Belle-II/ZDLM Hiroyuki Nakayama – Belle-II/BEAST

Autres Collaborations:

- **SLAC** (U. Wienans et al.): luminosity feedback through dithering technique - **IPHC-Strasbourg** (I. Ripp-Baudot et al.): characterize beam backgrounds in Belle-II

ZDLM = *Zero Degree Luminosity Monitor*

BEAST = Beam Exorcism for A STable Belle-experiment

Journées Accélérateurs 2015

<u>Plan</u>

Définition du Projet:

- La machine SuperKEKB
- Le but du projet
- Le capteur en diamant, le "Readout" et l'électronique, les tests @ LAL
- Les autres techniques (ZDLM)
- Les Etudes dans le LER (Low Energy Ring) & HER (High Energy Ring)
- Le design de la chambre à vide
- Les Analyses Préliminaires de Bruit de Fond d'un faisceau
- Conclusions

SuperKEKB

- → Collisionneur e⁺e⁻ de très haute luminosité (L= 8 10³⁵ cm⁻² s⁻¹)
- → LER (positron) ,E_{e+}= 4 GeV // HER (electrons), E_{e-}= 7GeV
- → Ultra- petits σ_x^* et σ_y^* à l'IP grâce au **nano-beam scheme (Raimondi, SuperB)**
- → N_b=2500 paquets @ 250 MHz, 1Tour= 10⁻⁵ s (circonférence = 3.016 Km)
- Phase 1, Deux faisceaux sans collision et sans focalisation finale "insertion à faible bêta" (Fév 2016)
- → Phase 2 (2017) (L=10³⁴ cm⁻² s⁻¹)
- → Phase 3 (2018) (L= 10³⁵ cm⁻² s⁻¹)

SuperKEKB New beam pipe & bellows **Nano-Beam Scheme** $d = \frac{\sigma_x^*}{x}$ σ_x^* σ_z Add / modify RF systems for higher beam current 20 Low emittance positrons to inject Positron source Damping ring New positron target / Half crossing angle: ϕ capture section Hourglass requirement $\beta_v^r \ge$ ow emittance qu Low emittance electron to inject

Journées Accélérateurs 2015

Belle II

e- 7 GeV 2.6 A

Le but du projet

- Pourquoi une mesure rapide de la luminosité avec une précision de 10-3 en 1 ms
- Corriger des instabilités de faiseau
- Avoir un feedback sur les paquets avec un fréquence de 100 Hz
 <u>Procédure:</u>
- Etude du processus <u>Bhabha radiatif à angle nul</u> (σ ~ 200 mbarn)
- Trouver des positions optimales des capteurs dans chaque côté
- Etude du signal dans le diamant
- Préparation d'un Readout et d'electronique rapide
- Etude du bruit de fond d'un faiseau (Bremsstrahlung) et le signal dans le diamant
- Installation de set-up au KEK en Decembre 2015
- Analyses des données

Capteur Diamant

- Principales caractéristiques :
 - → Une grande "band-gap" ----> un faible courant de fuite
 - → Une grande mobilité -----> une rapide collection de charge
 - \rightarrow Une grande conductivité thermique
 - → Une énergie de liaison élevée -----> radiation hardness
 - → Une impulsion très rapide -----> quelques ns
- → Fonctionnement (très simple):
 - → Une particule chargée crée des paires e⁻/h en traversant le diamant
 - → Une haute tension appliquées sur les électrodes sépare les deux charges
 - \rightarrow Un signal est lu sur l'oscilloscope avec amplification

Capteur diamant cividec

Journées Accélérateurs 2015

Tests @ Salle Blanche

Le but des tests:

→ Caractérisation de diamant (Reconstruction de Landau)

→ Caractérisation de l'ampli de charge (σ =10 ns)(Largeur de signal, Position du maximum du signal)

Pourquoi?

 \rightarrow On a besoin de vérifier que la position du max de signal ne bouge pas significativement et ne dépend pas du maximum de signal

→ Savoir si l'amplitude de sortie dépend de la largeur de signal à l'entrée (en changeant l'angle du diamant ou en utilisant un diamant plus mince (140 um))

06 Octobre 2015

Signal de diamant

- → La distribution d'énergie déposée est une <u>'Landau'</u>
- \rightarrow 1 MIP créé 36 e⁻/h paires par μ m
- → la largeur du signal dépend de l'épaisseur du diamant

Source bêta ⁹⁰Sr (E_e= 0.546 MeV)

Analyses des données

→ 140 μ m , 5x5 mm² capteurs en diamant (trigger sur tous les signaux du scintillateur) (V=-100 V)

 \rightarrow 1MIP correspond 5040 e⁻/h paires ~ 0.8 fC ~ 3.2 mV

Readout et Electronique

<u>Le Set-up:</u>

→ Un détecteur sCVD (500 μ m pour phase1 & 2, 140 μ m pour phase3) polarisé par une haute tension

- \rightarrow Un amplificateur de charge cividec (Gain= 4mv/fC, σ = 10ns)
- \rightarrow Des cables heliax de faible attenuation (Estimation de 80/100 m)
- → DAQ (ADC-FPGA-DAC)
- 1GSPS échantillonage pour l'ADC (10 bits) et le DAC (16 bits)
- FPGA pour calculer le L_T et le L_B

Autre technologie @ KEK : ZDLM

 \rightarrow Fait et dirigé par notre collaborateur au KEK S.Uehara san

→ Un scintillateur et un détecteur Cherenkov de même taille et géométrie $(15x15x50 \text{ mm}^3)$

- \rightarrow Fonctionnent séparément ou en coincidence (pour éviter des bruit)
- → Position: A l'extérieur de la chambre à vide, derrière nos capteurs
- \rightarrow 1 signal correspond à un tracking length supérieur à 15 mm

2013.7.17 S.Uehara

Journées Accélérateurs 2015

Les Etudes dans le LER

 \rightarrow Les positrons Bhabha de faible énergie sont perdus en aval de l'IP (après les aimants, quadrupoles, dans les drifts)

 \rightarrow A 13.9 m, le taux de positrons Bhabha (4.7% de la section efficace totale) est suffisant et il y a de la place pour les capteurs (3m de drift)

Luminosity (cm ⁻² s ⁻¹)	Aimed precision (in 1 ms)	Required fraction
10 ³⁴	10-2	2.1 x 10 ⁻³
8 10 ³⁵	10-3	2.6 x 10 ⁻³

La Géométrie de la Chambre à Vide

→ Les positrons sortent de la chambre à vide (6mm Cu) avec un angle moyen de 5 mrad

 \rightarrow Par conséquent, un très faible signal dans le diamant (Précision ~ 7%)

Résultats

	Luminosity (cm ⁻¹ s ⁻¹)	Required Precision in 1 ms (Nb of particles)	Number of particles collected in 1 ms	Number of particles per bunch crossing
No window	10 ³⁴	10 ⁻² (> 10 ⁴ part)	1.4 10 ²	0.00056
No window	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	1.3 10 ⁴	0.052
Window	10 ³⁴	10 ⁻² (> 10 ⁴ part)	4.4 10 ³	0.0176
Window	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	3.5 10 ⁵	1.4
Window+Radiator	10 ³⁴	10 ⁻² (> 10 ⁴ part)	1.5 104	0.06
Window+Radiator	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	1.2 10 ⁶	4.8

D'autres matériaux??

- → La fenêtre est coûteuse et peut générer des instabilités pour le faiseau !
- → Possibilité de faire une chambre à vide avec d'autres matériaux (Cu, Be, Ti, Al)
- → Simulation complète pour différents matériaux et géométrie de la chambre à vide ...

(<u>+ études de ZDLM</u>)

Sensor locations in HER : γ detection?

Bremsstrahlung

 \rightarrow Phase 1, pas de collision ----> Etude de Bruit de fond (Brems, Touscheck, Coulomb)

 \rightarrow A 13m, notre signal est-il contaminé par du bruit de fond single beam?

Process	Loss rate in 1.65 m (PPS)	Number of particles in the sCVD per second per bunch
Brems @ phase1 (1000 bunch) <u>@ 10 nTorr</u>	2.605 x 10 ⁷	232
Bhabha @ phase 2 (L= 10^{34} cm ⁻² s ⁻¹) (2500 bunch)	2 x 10 ⁷	178

<u>Très très</u> préliminaires !!!!

<u>Sachant que le vide est meilleur</u> <u>en Phase 2 (1nTorr), ll y aura</u> <u>moins de pertes de</u> <u>Bremsstrahlung que les Bhabha</u>

Conclusions

- La monitorage rapide est très importante pour un feedback et pour l'optimisation
- Dans le LER, les capteurs seront installés à 13m en aval de la chambre à vide. Pour le HER, l'étude des photons est en cours.
- Le meilleur design de la chambre à vide est une fenêtre à 45° pour phase 2
- Les analyses Bremsstrahlung sont en cours
- Les analyses des données de tests dans la salle blanche sont en cours. 3 Ampli de charge et 3 sCVD ($500 \ \mu m$) sont arrivés au LAL, et on prévois de les tester très bientôt
- Le 'Readout' est toujours sous préparation et l'installation du setup est prévu en Décembre 2015
- La prise de données commencera en Février 2016 pour le commissionning de SuperKEKB @ Phase 1 (Février à Mai 2016)

Back-up

Résultats

Beam pipe Design, diamond @ 90º	Precision in 1 ms @ phase 2	Precision in 1 ms @ phase 3
Cu @ 1 mm	2.7 x 10 ⁻²	4 x 10 ⁻³
AI @ 1 mm	1.7 x 10 ⁻²	2.5 x 10 ⁻³
Ti @ 1 mm	2 x 10 ⁻²	3 x 10 ⁻³
Be @ 1 mm	1.3 x 10 ⁻²	1.9 x 10 ⁻³
Cu window at 45°	7.5 x 10 ⁻³	1.1 x 10 ⁻³

Précision= $\frac{1}{\sqrt{(N)}}$, N= 4.7 % x L x σ x (N_{diamond} / N_{exiting}); L = Luminosity, σ = cross-section, N_{diamond} = number of incident particles in the diamond per b.c , N_{exiting} = total number of exiting particles over 3 m

→ La fenêtre est le meilleur cas ! Et C'EST POSSIBLE !