# Etude et Conception de l'Accélérateur d'Electrons dans le cadre du Projet CILEX avec le code WARP

# <sup>1</sup>P. Lee, <sup>1</sup>T. L. Audet, <sup>2</sup>R. Lehe, <sup>2</sup>J.-L. Vay, G. Maynard, <sup>1</sup>B. Cros

<sup>1</sup>LPGP, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91405 Orsay France <sup>2</sup>Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

> Les Journées Accélérateurs 4-7 octobre 2015, Roscoff



DÉPARTEMENT Physique des Ondes et de la Matière







#### Pourquoi rester ici alors qu'on peut très bien aller faire du surf?



surfeur sillage

bateau



paquet sillage d'électrons

laser

#### Plan

- Contexte
  - Accélérateur multi étages
  - Physique de l'injecteur
- Modélisation avec WARP
  - Modules de simulation
- Résultats
  - Analyse des résultats expérimentaux
  - Prédiction des paramètres laser plasma
- Conclusion

# Accélérateur d'électrons dans un schéma multi-étages dans le projet CILEX



#### Modélisation d'un accélérateur à deux étages:

- **un injecteur** : milieu dense, la physique est complexe, fortement non-linéaire; de l'ordre de plusieurs mm
- une ligne de transport : code habituel, de l'ordre du m
- un accélérateur : milieu moins dense, mais très longue, l'ordre de plusieurs m

## L'injection induite par ionisation est étudiée pour l'optimisation de l'injecteur

# Objectifs:

- comprendre la physique de l'injecteur
- faire des études paramétriques pour satisfaire les contraintes imposées

# Methode d'injection:

Injection induite par ionisation

Composition de gaz:  $H_2 + qq \% N_2$ 

#### Un électron sera piégé dans l'orbite à condition que H≤H<sub>s</sub>



PIC: Particle-In-Cell

WARP\*:



un code PIC<sup>+</sup> open-source co-dévéloppé à LBNL







Quasi 3D: Méthode de la décomposition Fourier dans la direction poloïdale<sup>†</sup>

Processus d'ionisation: Module d'ionisation qui s'appuie sur le modèle ADK

Analyse des trajectoires: Module de suivi de trajectoire des particules

Résultats des simulations avec WARP

\*J.-L Vay et al. Computational Science & Discovery, 2012,5 014019. †A. F. Lifschitz et al. Journal of Computational Physics 228, 2009, 1803-1814.

#### La position du plan focal du laser influence la distribution d'énergie des électrons accélérés



Pourquoi les spectres sont-ils aussi différents?

#### L'évolution du a<sub>0</sub> contrôle la distance d'accélération



distance d'accélération plus courte pour z<sub>f</sub>=1,9mm



# La dispersion d'énergie est améliorée en réduisant la longueur de la cellule



#### **Conclusions et Perspective**

Modélisation quasi 3D

- On dispose d'un outil de simulation opérationnel permettant:
  - d'analyser les résultats expérimentaux
  - d'optimiser les paramètres physiques pour l'injecteur

### Physique de l'injecteur

- L'injection est contrôlée par l'évolution du a<sub>0</sub>
- On met en évidence un régime particulier → compétition entre les conditions initiales et les effets non-linéaires

## Perspective

L'optimisation de l'injecteur se poursuit // les expériences

#### Merci de votre attention





un code PIC<sup>+</sup> open-source co-dévéloppé à LBNL



<sup>+</sup>PIC: Particle-In-Cell

WARP\*:

un code PIC<sup>+</sup> open-source co-dévéloppé à LBNL



\*J.-L Vay et al. Computational Science & Discovery, 2012,5 014019.

<sup>+</sup>PIC: Particle-In-Cell

WARP\*:

un code PIC<sup>+</sup> open-source co-dévéloppé à LBNL



\*J.-L Vay et al. Computational Science & Discovery, 2012,5 014019.



WARP\*:

un code PIC<sup>+</sup> open-source co-dévéloppé à LBNL

