Thérapies par capture neutronique auprès d'un accélérateur en France

Accelerator Based- Neutron Capture Therapies

Daniel Santos

Laboratoire de Physique Subatomique et de Cosmologie LPSC- Université Grenoble-Alpes ,CNRS/IN2P3

Contributions: M. Baylac, F. Bouly, R. Delorme, D. Dauvergne, V. Ghetta, J. Giraud, O. Guillaudin, Th. Lamy, J.F. Muraz, P. Rubiolo, N. Sauzet.

Plan de la présentation

- Limitations actuelles des radiothérapies dans le traitement du cancer et nouvelles approches
- ✓ AB-NCT (BNCT et GdNCT) de quoi il s'agit- il ? Et implantation dans le monde
- ✓ Projet de démonstrateur pour l'AB-NCT en France : (accélérateur + source d'ions + (cible + modérateur) + détecteur de n⁰ et gamma)
- ✓ Propositions du LPSC
 - Cibles
 - Modérateurs adaptés
 - Détecteur de neutrons rapides et thermiques
 - Détecteur gamma afin de cartographier la dose
 - Etudes radio-biologiques
- ✓ Stratégie du projet AB-NCT en France

SFP-Accélérateurs. Roscoff, 7 octobre 2015 D. Santos (LPSC- Grenoble)

Traitement du cancer : limitations & nouvelles approches

- Limitations de la radiothérapie :
 - Tumeurs radiorésistantes et diffuses (ex. Glioblastome)
 - Tumeurs non-localisées (ex. métastases multiples) (cerveau, foie,...)
- Nouvelles approches :

- Augmenter l'impact radiobiologique du traitement grâce aux particules de haut-Transfert d'Énergie Linéaire (TEL) produites -> ions avec un faible parcours et/ou électrons de basse énergie (Auger, conversion interne)
- S'assurer de la localisation spécifique et de l'accumulation de l'élément radiosensibilisant
 transport sélectif des molécules vers les cellules cancéreuses
 - ✓ ¹⁰B ou ¹⁵⁷Gd : différents composés existent sur le marché
 - ✓ Possibilité d'utiliser le gadolinium ou le bore sous forme de nanoparticules

BNCT - Boron Neutron Capture Therapy

→ Détruire la cellule cancéreuse de l'intérieur par les fragments hadroniques (⁴He, ⁷Li) provenant de la capture neutronique par le ¹⁰B

Étapes de la BNCT :

- i) Absorption du ¹⁰B par les cellules de la tumeur
 - ii) Irradiation de la zone par un flux important de neutrons épithermiques (0,1 eV – 10 keV)

iii) Fragmentation du ¹¹B donnant une particule alpha et un ⁷Li (5-8 μ m) à faible parcours

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Sur la nocivité du rayonnement incident pour le patient :

→ Importance de rester en neutrons épithermiques (En < 10 keV)

ICRP, 1996. Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74. Ann. ICRP 26 (3-4). http://www.icrp.org/publication.asp?id=ICRP%20Publication%2074 La BNCT : Son application peut se faire grâce à 2 porteurs du ¹⁰Bore : les molécules BPA et BSH dont la sélectivité tissu sain/ tissu tumoral) est d'environ 3 à 4.

BSH : sodium borocaptate BPA : para-borophenylalanine $Na_{2} {}^{10}B_{12} H_{11} SH$ $C_{9} H_{12} {}^{10}BNO_{4}$

Kaplan-Meier estimates of overall survival for all newly diagnosed glioblastoma (WHO grade 4, n = 21). The median survival time of boron neutron capture therapy (BNCT) group (blue line) is 15.6 months. There is statistical significance between both group Log-rank test (p = 0.0035)

Kaplan-Meier estimates of overall survival for all newly diagnosed glioblastoma (protocol 1 and 2). External beam X-ray irradiation (XRT) boost after boron neutron capture therapy (BNCT) was carried for the latter 11 cases. This improved the median survival time to 23.5 months (from 14.1 months for BNCT only, protocol 1, dotted line in blue).

D'après Barth et al., Radiation Oncology 2012, 7:146 , les données proviennent de Kawabata et al., Appl. Radiat. Isot 2009 67:S15-18

FIRST CLINICAL CASE OF BORON NEUTRON CAPTURE THERAPY FOR HEAD AND NECK MALIGNANCIES USING ¹⁸F-BPA PET

Teruhito Aihara, MD,¹ Junichi Hiratsuka, MD,² Norimasa Morita, MD,² Masako Uno, MD,¹ Yoshinori Sakurai, PhD,³ Akira Maruhashi, PhD,³ Koji Ono, MD,³ Tamotsu Harada, MD¹

Boron Neutron Capture Therapy

HEAD & NECK-DOI 10.1002/hed September 2006

A patients with recurrent submandibular gland cancer, underwent ¹⁸F-¹⁰B-BPA PET before and after BNCT.

The tumor/normal tissue boron concentration ratio was 2.9.

The tumor was irradiated at the Kyoto University Research Reactor with epithermal neutrons 5 MW for 90 minutes.

Results. To date there has been continuous complete regression in the tumor and no acute and chronic complications for 1.5 years.

After 12 mo. from BNCT

ABNP 2014

Planche de Laura Evangelista, Oncological Institute of Veneto IOV – IRCCS, Padova, Italy

Before BNCT

Planche de Laura Evangelista, Oncological Institute of Veneto IOV – IRCCS, Padova, Italy

AB-NCT de quoi il s'agit- il ? Et implantation dans le monde

La BNCT existe depuis 1960 aux USA auprès des réacteurs nucléaires. Depuis les années 1990 elle a été expérimentée au Japon, UK, Russie, Finlande, Chine, Argentine... mais jamais en France

Aujourd'hui, centres en activité (Rapport NuPECC 2014, Nuclear Physics European Collaboration Committee) :

Table 10.1. Operative BNCT centres									
Centre	States	Neutron source		N° of treated patients*					
Helsinki University Central Hospital, Helsinki, Finland	Europe	FIR-1, VTT Technical Research Centre, Espoo		50 GM 2 AA 31 HN					
University of Tsukuba, Tsukuba City, Ibaraki	Japan	JRR-4, Japan Atomic Energy Agency, Tokai, Ibaraki		20 GM 4 AA					
University of Tokushima, Tokushima	Japan	JRR-4 (Kyoto University Re- search Reactor, Osaka)	Que des	23					
Osaka Medical College and Kyoto University Research Reactor, Kyoto University, Osaka and Kawasaki Medical School, Kurashiki	Japan	KURR	reacteurs !	30 GBM 3 AA 7 Men 124 HN					
Taipei Veterans General Hospital, Taipei, Taiwan	Republic of China	THOR, National Tsing Hua University, Hsinchu, Taiwan		10					
Instituto de Oncología Angel H, Buenos Aires	Argentina	Bariloche Atomic Center		7CM 3 AT					

* GM: glioblastoma multiforme; CM: cutaneous melanoma; AA: anaplastic astrocytoma; HN: head and neck cancer; Men: meningioma; AT: anaplastic thyroid cancer

Un des problèmes fondamentaux pour les études et le développement de cette thérapie est l'accès à des sources de neutrons intenses (> 10⁹ n/cm² s) dans un environnement médicalisé.

SFP-Accélérateurs. Roscoff, 7 octobre 2015 D. Santos (LPSC- Grenoble)

De la NCT à l' AB-NCT : Accelerator Based - Neutron Capture Therapy Avec application au B ou au Gd (BNCT ou GdNCT)

Le profil énergétique du faisceau de neutrons épithermiques, défini par le modérateur, permet une adéquation à la position de la tumeur et une optimisation de la dose relative (tumeur/tissus sains) en lien avec la concentration de ¹⁰B ou de ¹⁵⁷Gd.

SFP-Accélérateurs. Roscoff, 7 octobre 2015 D. Santos (LPSC- Grenoble)

AB-NCT : cibles de production de neutron

D'après Halfon et al, FNDA 2011, 6-11 November, Ein Gedi, Dead Sea, Israel

Réaction (MEV)		Taux de production des neutrons (n/ <u>s.mA</u>)	Energie moyenne des neutrons (keV)	Energie maximale des neutrons (keV)
⁷ Li(p,n)	1,91	2,4 10 ¹⁰	34	67
⁷ Li(p,n)	2,5	8,9 10 ¹¹	326	786
⁹ Be(p,n)	4	4 10 ¹²		2120
⁹ Be(d,n)	1,5	2,16 10 ¹¹	2010	5810
⁹ Be(d,n)	1,5			
¹³ C(d,n)	1,5	1,82 10 ¹¹	1080	6770

Nouvelle possibilité ouverte par le pic à basse énergie sur cible mince (8um)

PLUS L'ÉNERGIE DES NEUTRONS EST ÉLEVÉE PLUS LA MODÉRATION POSERA DES PROBLÈMES

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Choix de cible pour les études actuelles dans le monde :

Current status and performance of the different accelerators intended for AB-BNCT facilities worldwide.

Institute-location	Machine (status)	Target and reaction	Beam energy (MeV)	Beam Current (mA)	Reference
Budker Institute Russia IPPE-Obninsk Russia Birmingham Univ. UK KURRI Japan Soreq Israel	Vacuum insulated Tandem (ready) Cascade generator KG-2.5 (ready) Dynamitron (ready) Cyclotron (ready) RFQ-DTL (ready)	Solid ⁷ Li(p,n) Solid ⁷ Li(p,n) Solid ⁷ Li(p,n) ⁹ Be(p,n) Liquid ⁷ Li(p,n)	2.0 2.3 2.8 30 4	2 3 1 1	Aleynik et al (2011) Kononov et al. (2004) Culbertson et al. (2004) Tanaka et al. (2011) Halfon et al. (2011)
Legnaro INFN Italy Tsukuba Japan CNEA Argentina	RFQ (under construction) RFQ-DTL (under construction) Single ended Tandem Electrostatic Quadrupole (under construction)	⁹ Be(p,n) ⁹ Be(p,n) ⁹ Be(d,n) Solid ⁷ Li(p,n)	4–5 8 1.4 2.5	30 10 30 30 <i>NIM 20</i>	Ceballos et al. (2011) Kumada et al. (2011) Kreiner et al. (2011) D13,Kreiner et al.

LES Défis de l'AB-NCT :

- Produire 10⁹ n_{th}/(cm².sec) sur la tumeur (afin que l'irradiation ne dure pas plus de 30 minutes) avec une source compacte de neutrons qui puisse s'installer dans les hôpitaux.
- Fabriquer une cible qui puisse tenir 15-30 kW sur 10 cm² (3kW/cm²)
- Caractériser le champ neutronique rapide sortant de la cible et le champ neutronique épi-thermique sortant du modérateur

Projet d'un démonstrateur AB-NCT en France

Deux voies possibles : 1) deutons (1,5 MeV) sur ⁹Be 2) protons (2,5 MeV) sur ⁷Li liquide

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Types d'accélérateurs pour l'AB-NCT

- Faisceaux de protons à 2,5 MeV et/ou deutons à 1,5 MeV, intensité : 10-20 mA
- Types d'accélérateurs possibles
 - Cyclotron
 - Machine électrostatique
 - Linac : source d'ions, quadrupole radiofréquence (RFQ), post-accélérateur
- Projets opérationnels ou en développement (rapport NuPeCC 2014)
 - Kyoto univ. (Japan) : 30 MeV, 1 mA, cyclotron
 - Budker institute (Russia) : 2.5 MeV, 10 mA, tandem
 - Argentine, commission atomic energy : 2.4 MeV, 30 mA, tandem-ESQ
 - Birmingham univ. (UK) : 3 MeV, 5 mA, dynamitron
 - Soreq (Israël) : 4 MeV, 1 mA, RFQ-DTL
 - Tsukuba (Japan) : 8 MeV, 10 mA, RFQ
 - Legnaro (INFN): 5 MeV, 30 mA, RFQ

Solutions technologiques

Machines électrostatiques

- Van de Graaff (Pelletron, Tandem) ou Dynamitron (Cockroft-Walton)
- Solutions industrielles (HVEE, NEC, IBA, Hyperion)
- Limitation en intensité et fiabilité (?)

Cyclotron

- Solution industrielle (IBA, AIMA)
- Limitation en intensité

→ Solution linac (source et RFQ) semble la plus adaptée

• Source d'ions (ECR) : Multiples possibilités pour 10-20 mA protons ou deutons

- Industrielles 2.45 GHz (i.e. Pantechnik)
 - Monogam 1000 (10 mA protons garantis)
 - SILHI-CEA (40 mA protons garantis)
- Sources développées au LPSC (> 2.45 GHz, basse puissance)
 - micro-phoenix 10 GHz-300 W (8 mA protons)
 - en cours : Super-COMIC 5.8 GHz-80 W (2 mA protons)

Injecteur type :

LEBT (MEBT) : Low (Medium) Energy Beam Transport

- Structure RFQ
 - Accélération, mise en paquet et focalisation radiale (modulation des électrodes)
 - Gamme en énergie : jusqu'à 1-2 MeV
- Exemples de RFQ
 - SPIRAL2 (CEA) : protons ou deutons (750 keV/A), 5 mA
 - SARAF : 1,5 MeV/A
 - MYRRHA (IAP Frankfurt) : 1,5 MeV, très bonnes performances
 prototype à étendre pour AB-NCT ?
- Au LPSC: test de l'injecteur de MYRRHA
 - Source Monogam 1000 et LEBT magnétique (fiabilité)
 - Protons 30 keV, 15 mA

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Cibles

Thermique de la cible

Faisceau Proton / Deuton

Production de Neutron

Cible (Li ou Be) et son support

Difficulté réside dans les ordres de grandeurs nécessaires pour la NCT :

Puissances de 30 kW à 50 kW Diamètre du faisceau : 35 mm

Exemple :

Echauffement d'un disque de cuivre fixe de 10 mm d'épaisseur refroidi avec de l'eau auquel on impose une puissance de 50 kW sur un diamètre de 35 mm La cible est fondue en 5 seconde environ.

→ Nécessité de trouver des solutions thermiques

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Cibles NCT développées dans le monde

✓ Cibles solides (lithium ou Béryllium)

La cible est un dépôt de faible épaisseur sur un support de cible fixe refroidi par circulation d'eau

Fonctionne avec des puissances faibles et problèmes de tenue du dépôt au cours du temps.

Le lithium a un point de fusion à 180°C

✓ Cible liquide de lithium

Design de cible fixe avec circulation de lithium.

Fonctionnement acceptable jusqu'à 2 kW.

Projets LPSC axés sur la résolution des problèmes thermiques pour viser les puissances adaptées à la thérapie

- Dépôt de béryllium sur graphite
- Cible de lithium liquide

SFP-Accélérateurs. Roscoff, 7 octobre 2015

D. Santos (LPSC- Grenoble)

Cibles

tournantes

Modération et détection de neutrons rapides et thermiques

SFP-Accélérateurs. Roscoff, 7 octobre 2015 D. Santos (LPSC- Grenoble)

Cas du Béryllium

Spectre neutronique à partir de la réaction ⁹Be(d (1.45 MeV),n) (Q= 4.36 MeV)

Distribution angulaire Mesure de neutrons rapides avec le premier proto-MIMAC (IRSN)

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Simulation d'un modérateur pour la cible de ⁹Be (M.Tacca, D.S et al. (LPSC, 2015))

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Spectre des neutrons produits sur la cible de ⁹Be à la sortie du modérateur simulé par Geant4 et MCNP (M. Tacca et al. LPSC,2015) La limite entre neutrons épithermiques et rapides de 10 keV est indiquée

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Simulation et calcul de dose sur la cible de ⁷Li liquide (M.Tacca, D.S. et al (LPSC-2015)

SFP-Accélérateurs. Roscoff, 7 octobre 2015

MIMAC-FastN (valorisation de MIMAC) Détecteur de neutrons rapides et thermiques (à partir de la capture sur le ¹⁰B)

Installation de test thermique

SFP-Accélérateurs. Roscoff, 7 octobre 2015 D. Santos (LPSC- Grenoble)

Dispositif de test thermique

> La cible doit pouvoir fonctionner avec un équilibre thermique "tolérable "

dissiper la puissance thermique reçue

> Puissance thermique reçue par la cible : 30 kW (sur 10 cm²)

→ Densité de puissance de 3 kW/cm²

Problème : Comment délivrer une telle densité de puissance ?

Par faisceau d'électrons :

- Energie : 30 keV
- Courant : 100 mA
- Faisceau : 1 cm²

SFP-Accélérateurs. Roscoff, 7 octobre 2015

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Source COMIC

COMIC "**CO**mpact **Mi**crowave **C**oaxial" est une source ECR (**E**lectron **C**yclotron **R**esonance) optimisée et miniaturisée développée par le Service Source d'Ion (SSI) du LPSC. (*Patent: WO2010043831(A1)-2008*)

Energie cinétique = Tension d'extraction Courant = Courant Alimentation extraction

TECHNIX SR-30kV-5kW -> I=167 mA

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Monitoring du faisceau

- Faisceau continu
 - Mesure du courant:

Cage de faraday dissipative (refroidie à l'eau) \mathbf{S}

Profil du faisceau :

BIF : Beam Induced Fluorescence

Flectrons 13 kV 4 mA 52 W Ø Ext : 1 mm 3.10⁻⁵ mbar

Cible de test

Cible de taille réduite

SFP-Accélérateurs. Roscoff, 7 octobre 2015

Dispositif de test

Couplage COMIMAC et Cible tournante

Expériences en radiobiologie et simulations

- Collaboration avec l'ESRF (ID-17, H. Elleaume) et l'ILL (U. Koester) :
 - Étude expérimentale et dosimétrique des différents composés biochimiques :
 - Expériences cellulaires : comparaison de la radiosensibilité due à la BNCT / GdNCT (ILL) vs thérapie par photo-activation (ESRF)
 - Etude micro-dosimétrique par simulation des GdNP : photons vs capture de neutron
 - ✓ Test des GdNP avec neutrons (ILL)
 - Dommages hors-tumeur :
 - étude de l'efficacité biologique relative due à l'azote présent dans l'ADN, comme source principale de la dose non-souhaitée dans les tissus environnants (ILL)

Projet AB-NCT

Au LPSC – Grenoble :

- Cibles (designs, tests thermiques). Modérateurs (simulation et design).
- Détecteurs neutrons et gammas. Simulations et calculs de doses.
- Participation aux expériences sur cellules vivantes.

Participants :

- D. Santos (Chef de projet)
- J-F. Muraz (Coordination Technique)
- P. Cavalli
- D. Dauvergne
- R. Delorme (post-doc)
- J. Giraud
- V. Ghetta
- O. Guillaudin
- P. Rubiolo
- N. Sauzet (CDD- valo)

Evaluation du coût des installations expérimentales de validation :

Cible ⁹Be (Version test thermique) : 15 k€ Source d'électrons (COMIMAC) : 30 k€ Cible ⁷Li (maquette en eau) : 12 k€

Stratégie du projet AB-NCT en France

- La NCT est un sujet de recherche médicale → rôle essentiel de la communauté Santé qui devra porter les études et un projet clinique à venir
- Contexte local et Régional:
 - LPSC (source d'ions + accélérateur, cibles, modérateur, détecteurs neutrons et gamma)
 - ILL (U Koester et al.) et ESRF (H. Elleaume, JF Adam et al) irradiations cellulaires
 - CHU Grenoble (J. Balosso et al)
 - LabEx PRIMES: WP1 radiothérapies innovantes, WP3 Radiobiologie
 - Rôle des nanoparticules
 - Imagerie Gamma prompts
- Contexte national:
 - Sources d'ions et RFQs (LPSC, Ganil, Saclay)
 - Soutien de France Hadron
- Objectif: Intégrer le réseau international sur l'AB-NCT
 - Rôle du workshop AB-NCT à Grenoble (15-16 octobre 2015)
 - Argentine: TANDAR (CNEA) A. Kreiner et al (Manip à Legnaro entre le 28/9 et 2/10)
 - Allemagne, Italie, Finlande, Royaume Uni...

Workshop on Accelerator Based Neutron Capture Therapies (AB-NCT)

October 15-16th, 2015

Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France http://lpsc.in2p3.fr/ab-nct

Neutron Capture Therapies (NCT) rely on the selective administration of carrying compound that preferentially accumulates in tumour cells. Irradiation with a neutron beam induces lethal doses delivered to tumour tissues by reaction on carriers.

Prospects of expanding NCT require the implementation of neutron sources suitable for in-hospital sitting; then Accelerator-Based (AB) neutron sources are the best choice for this purpose. The aim of this workshop is to gather specialists of scientific domains involved in these innovative therapies to discuss the opportunity to develop a dedicated project in France along with the possible strategies.

Workshop AB-NCT au laboratoire le 15 et 16 Octobre

Intervenants non Grenoblois :

Wolfgang Sauerwein (Strahlenklinik Univ. Hospital, Essen) Andrés Kreiner (Tandar- CNEA, Argentine) Saverio Altieri (Pavia university) François Lux (Univ. Lyon I) Jérôme Schwindling (CEA Saclay) Robin Ferdinand (Ganil,Caen) Hanna Koivunoro (Helsinki University Hospital)

SFP-Accélérateurs. Roscoff, 7 octobre 2015