

V

The NA62 Experiment Seminar at LAL, Orsay, France

Mathieu PERRIN-TERRIN

CERN, Geneva, Switzerland.

December 4, 2015

- 2 The NA62 Experiment
- 3 First look at Data
- **4** Conclusions and Prospects

The physics case of ${\rm K}^+ \to \pi^+ \nu \bar{\nu}$

 Flavour Changing Neutral Current: no tree diagrams, hard GIM suppression

- Amplitudes proportional to $\left(\frac{m_q}{m_W}\right)^2 V_{qs}^* V_{qd}$, with q = u, c, t
- Mass and CKM terms compensate: both t and c contribute

$${\cal B}({
m K}^+ o \pi^+
u ar
u) = (8.4 \pm 1.0) imes 10^{-11}$$

► And very clean...

Mathieu Perrin-Terrin (CERN)

2/54

A word on Effective Field Theory

- Flavour observables are computed within EFT [Buras 9806471]
- EFT Virtue: separate short from long range pheno

$$\mathcal{H} = \frac{G_F}{2} \sum_i V_{CKM}^i C_i(\mu) Q_i(\mu)$$

$$\rightarrow F) = \langle F | \mathcal{H} | M \rangle$$

- Matrix elements bring normally large hadronic uncertainties
- Remaining uncertainties from Wilson coefficients,
- And external inputs

 $\mathcal{A}(M$

A word on Effective Field Theory

- Flavour observables are computed within EFT [Buras 9806471]
- EFT Virtue: separate short from long range pheno

$$\mathcal{H} = \frac{G_F}{2} \sum_{i} V^i_{CKM} C_i(\mu) Q_i(\mu)$$

$$\rightarrow F) = \langle F | \mathcal{H} | M \rangle$$

- Matrix elements bring normally large hadronic uncertainties
- Remaining uncertainties from Wilson coefficients,
- And external inputs

 $\mathcal{A}(M$

${\rm K}^+ \to \pi^+ \nu \bar{\nu}$ in Effective Field Theory

$$\mathcal{H} = \frac{G_F}{2} \sum_{i} V^{i}_{CKM} C_i(\mu) Q_i(\mu)$$

Matrix Elements

► Derived from $\mathsf{K}^+ \to \pi^0 \mathsf{e}^+ \nu$ using isospin symmetry: $\langle \pi^+ | (\tilde{\mathsf{sd}})_{\mathsf{V}-\mathsf{A}} | \mathsf{K}^+ \rangle = \sqrt{2} \langle \pi^0 | (\tilde{\mathsf{su}})_{\mathsf{V}-\mathsf{A}} | \mathsf{K}^+ \rangle$

Wilson Coefficients

- NLO QCD correction for top, NNLO for charm
- NLO EW correction for top & charm

SM Predictions [Buras 1503.02693]

$${\cal B}({\sf K}^+ o \pi^+
u ar
u) = (8.4 \pm 0.3 \pm 1.0_{\sf ext}) imes 10^{-11}$$

• Second error from external CKM inputs (V_{cb} , γ)

Mathieu Perrin-Terrin (CERN)

Testing the Standard Model

- ► $\mathcal{B}(\mathsf{K}^+ \to \pi^+ \nu \bar{\nu})$ with 10% uncertainties allows to determine $|V_{td}|$ at 9% [Buras 0405132]
- With B(K⁺ → π⁺νν̄), B(K_L → π⁰νν̄)¹ the CKM unitarity triangle can be built independently from B observables:

¹KOTO: SM single event sensitivity by 2020

Going Beyond the Standard Model

- Any 10% deviation from B_{SM} would signal new particles (e.g. vector boson) contributions
- ► Even more sensitive to NP when using correlations with $\mathcal{B}(\mathsf{K}_{\mathsf{L}} \to \pi^{0} \nu \bar{\nu}), \mathcal{B}(\mathsf{B}^{0}_{\mathsf{s}} \to \mu \mu), \gamma, \mathsf{B} \to \mathsf{K}(\mathsf{K}^{\star})\mu\mu, \epsilon'/\epsilon$
- A key observable for the LHC era

Mathieu Perrin-Terrin (CERN)

Going Beyond the Standard Model

- Any 10% deviation from B_{SM} would signal new particles (e.g. vector boson) contributions
- ► Even more sensitive to NP when using correlations with $\mathcal{B}(\mathsf{K}_{\mathsf{L}} \to \pi^{0} \nu \bar{\nu}), \mathcal{B}(\mathsf{B}^{0}_{\mathsf{s}} \to \mu \mu), \gamma, \mathsf{B} \to \mathsf{K}(\mathsf{K}^{\star})\mu\mu, \epsilon'/\epsilon$
- A key observable for the LHC era

Mathieu Perrin-Terrin (CERN)

State of the Searches

E949 Measurements - 2008

Stopping kaon technique

$$\mathcal{B}(\mathsf{K}^+ o \pi^+
u ar{
u}) = (1.73^{+1.15}_{-1.05}) imes 10^{-10}$$

Phys. Rev. D 77, 052003 (2008) Phys. Rev. D 79, 092004 (2009)

► KOTO at JPARC aims to reach by 2020 the SM single event sensitivity for $K_L \rightarrow \pi^0 \nu \bar{\nu}^2$

$$^2\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.0 \pm 0.3) \times 10^{-11}$$
 Buras 1503.02693

Mathieu Perrin-Terrin (CERN)

State of the Searches

E949 Measurements - 2008

Stopping kaon technique

$${\cal B}({\sf K}^+ o \pi^+
u ar{
u}) = (1.73^{+1.15}_{-1.05}) { imes} 10^{-10}$$

Phys. Rev. D 77, 052003 (2008) Phys. Rev. D 79, 092004 (2009)

KOTO at JPARC aims to reach by 2020 the SM single event sensitivity for K_L → π⁰νν̄²

$$^2\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.0 \pm 0.3) \times 10^{-11}$$
 Buras 1503.02693

Mathieu Perrin-Terrin (CERN)

NA62 Goal

- Measuring $\mathcal{B}(\mathsf{K}^+ \to \pi^+ \nu \bar{\nu})$ with 10% uncertainty in 2 years
 - ► O(100) signal events and Sig/Bkg O(10)
- ▶ With a signal efficiency of ~10%, it implies:
 - ▶ 10¹³ kaons in 2 years
 - background rejection of 10¹²
- Use SPS perfect for decay in flight technique

- 3 First look at Data
- 4 Conclusions and Prospects

NA62 Collaboration

NA62 Time Line

Reference Documents

2005 Proposal

[CERN-SPSC-2005-013]

2010 Technical Design

[NA62-10-07]

2014 Pilot Run

[G. Ruggiero, CERN Seminar]

Mathieu Perrin-Terrin (CERN)

With HCAL and GTK completion in 2015 all detectors are installed

Mathieu Perrin-Terrin (CERN)

Secondary Beam from SPS

- ► 5s spill at 750 MHz
- Composition: $\begin{array}{c} \mathsf{p} & \pi^+ & K^+ \\ \mathsf{70} & \mathsf{24} & \mathsf{6\%} \end{array}$

• 75 GeV/c with
$$\delta p/p = 1\%$$

Beam Instrumentation

- ► Kaon Tagging (KTAG, Differential Cerenkov N₂ or H₂)
- Kinematics (GigaTracker- GTK, Silicon hybrid pixels)
- Beam particle scattering detection (Guard Ring)
- Arrival time measurement

Decay Region

- ▶ 120m long, in vacuum (500 m³ at 10⁻⁶ mbar)
- 10% of K^+ decay in the first 65m:

5MHz of K⁺ decay, 4.5×10^{12} /year

Decay Products Instrumentation

- Kinematics (Spectrometer)
- Photon Detection (ECAL)
- π and μ identification (RICH, HCAL and, Muon Veto)
- Arrival time measurement (all + CHOD for charged particles)

${\rm K}^+ \rightarrow \pi^+ \nu \bar{\nu}$ Analysis Strategy

Background Sources

- K⁺decay incorrectly reconstructed
- Particle accidentally in time with a K⁺
 Analysis
 - Main variable $m_{miss}^2 = |p_K p_\pi|^2$
 - Look for signal in regions I and II
 - ► $p_{\pi} \in [15, 35]$ GeV/c (RICH, kinematics, γ rejection, accidental from $\pi^+ \rightarrow \mu^+ \nu$)
 - Background suppression needed:
 Kinematics 10⁻⁴ | Charged PID 10⁻⁷

 π^{0} 's γ Rejection 10⁻⁸ Timing 10⁻²

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Analysis Strategy

Background Sources

- K⁺decay incorrectly reconstructed
- Particle accidentally in time with a K⁺ Analysis
 - Main variable $m_{miss}^2 = |p_K p_\pi|^2$
 - Look for signal in regions I and II
 - ▶ $p_{\pi} \in [15, 35]$ GeV/c (RICH, kinematics, γ rejection, accidental from $\pi^+ \to \mu^+ \nu$)
 - Background suppression needed: Kinematics 10^{-4} Charged PID 10^{-7}

Analysis Sensitivity (MC)

Decay	event/year
$K^+ o \pi^+ u ar{ u}(SM)$	45
Total Background	10
${\sf K}^+ o \pi^+ \pi^0$	5
${\sf K}^+ o \mu^+ u$	1
${\rm K}^+ \to \pi^+ \pi^+ \pi^-$	< 1
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ + other 3 track decays	< 1
${\sf K}^+ o \pi^+ \pi^0 \gamma^{\sf IB}$	1.5
$K^+ ightarrow \mu^+ u \gamma^{IB}$	0.5
$K^+ o \pi^{0} e^+(\mu^+) u$ + others	negligible

KTAG - Kaon Identification and Timing

KTAG - Performance

K⁺Identification > 95%

▶ π⁺, p Rejection > 99.9%

GTK - Beam Particle Kinematics and Timing

GTK3 in lab

GTK - Beam Particle Kinematics and Timing

Mathieu Perrin-Terrin (CERN)

- Hybrid silicon pixels detector, changed every 100 run days
- 18k time-resolved pixels / station (300×300µm²)
- ► ASIC thinned to 100µm operated in vacuum and cooled with micro-channels: world first HEP implementation!

GTK - Time Measurement Principle

Mathieu Perrin-Terrin (CERN)

GTK - Time Measurement Principle

Mathieu Perrin-Terrin (CERN)

GTK - Time Measurement Principle

Mathieu Perrin-Terrin (CERN)

- At EoC, TDCs measure rising and falling edge time
- ▶ The full GTK integrates 21,600 TDCs in <25 cm²!
- Use Time-over-Threshold to estimate time walk

GTK - MicroChannels Cooling

- Etch channels in a 130µm thin Si plate glued on the ASICs
- Circulate cold C₆F₁₄ in micro-channels (3.5 bars, 3 g/s)
- Fluid brought with capillaries soldered on cooling plates

GTK - MicroChannels Cooling

- Etch channels in a 130µm thin Si plate glued on the ASICs
- Circulate cold C₆F₁₄ in micro-channels (3.5 bars, 3 g/s)
- Fluid brought with capillaries soldered on cooling plates

GTK - Status and Performance

- Three stations installed, (2 thinned at 100µm)
- 7-8 out of 10 chips per stations were working, fix next run
- Time resolution 260 ps per hit (at 200V instead of 300V) see First Data for kinematics performance

Guard Ring - GTK3 Scattered Particle Detection

Five first Guard Ring stations during installation

CHANTI - Design and Performance

- 6 stations of scintillator+WLS fibres read with SiPMs
- Signal processed with TDC

CHOD - Charged Decay Product Timing

Time Resolution, $\sigma(t) \simeq 300 \text{ ps}$

- 2 layers (X-Y) of scintillator read each by 64 PMT
- Used for time reference

Spectrometer - Decay Products Kinematics

Spectrometer - Design and Status

- 2.1m long straw filled wilt Ar+CO₂ at 1 atm ran in vacuum
- 7168 straws arranged in 4 chambers of 4 views (x,y,u,v)
- Readout up to 700kHz per straw with TDCs
- See performance in First Data

ECAL - Photon Detection ($K^+ \rightarrow \pi^+ \pi^0$)

LKr NA48

$1 \rightarrow 8.5 \text{ mrad}$

IRC (+ SAC) Shashlik type

< 1 mrad: angular coverage

Mathieu Perrin-Terrin (CERN)

The NA62 Experiment

LAV: 8.5 \rightarrow 50 mrad

Specifications	
Eff.	99.8 - 99.99%
Time Reso	< 1 ns
Tot Rate	1MHz

12 stations of 4-5 rings of staggered lead glass blocks

LKr: 1 \rightarrow 8.5 mrad

- Quasi homogenous liquid Kripton calorimeter from NA48
- Inefficiency measured in 2004 at 10⁻⁵ for E > 10 GeV
- Major RO upgrade: full LKr sampled at 40MHz with 14bits FADC

LKr - Performance

• $K^+ \rightarrow \pi^+ \pi^0$ event reconstructed with LKr only

p_K set to it nominal value

• π^0 reconstructed from two EM clusters, constrained to m_{π^0}

Mathieu Perrin-Terrin (CERN)

The NA62 Experiment

RICH - π , μ Identification

RICH - Design

Specifications	
$\pi \rightarrow \mu$	< 1% for <i>p</i> ∈ [15, 35] GeV
Angular Reso	< 100µrad
Time Reso	< 100 ps RMS
Rate	10 MHz

- Neon at 1 atm: $p_{Th}^{\pi} = 13 GeV/c$
- 17m long vessel:
 ~20 hits per ring
- Light reflected on two 1000 PM arrays read with TDC

RICH - Performance

The NA62 Experiment

HCAL and MUV - π , μ Identification

MUV - back

MUV - Design and Performance

 MUV made of scintillator 22x22 cm² tiles read with 2 PMs and CFDs

HCAL 1 and 2 - Design and Performance

 HCAL1 (HCAL2) made of alternating layers of iron and 6 (12) cm scintillator strip read with PMs and TDCs

System Feature

- As beam is not bunched triggers arrive asynchronously
- Digital inputs to L0TP

- System tested up to full intensity
- Digital calorimetric trigger implemented

System Feature

- As beam is not bunched triggers arrive asynchronously
- Digital inputs to L0TP

- System tested up to full intensity
- Digital calorimetric trigger implemented

System Feature

- As beam is not bunched triggers arrive asynchronously
- Digital inputs to L0TP

- System tested up to full intensity
- Digital calorimetric trigger implemented

System Feature

- As beam is not bunched triggers arrive asynchronously
- Digital inputs to L0TP

- System tested up to full intensity
- Digital calorimetric trigger implemented

System Feature

- As beam is not bunched triggers arrive asynchronously
- Digital inputs to L0TP

2015 Run

- System tested up to full intensity
- Digital calorimetric trigger implemented

LOTP

12

PC Farm

20kHz

on disk

Calorimetric Trigger

- Full LKr sampled at 40 MHz with 14bits FADC
- Energies in one 25ns sampling of 16 (4x4) adjacent cells summed and pipe-lined in trigger boards
- With 5 consecutive 16-cell sum, trigger boards look for peaks in time and fit to get maximum (i.e. energy)
- Peak time extracted by constant fraction discrimination
- Energy filled in a 6.25ns lsb histo

Calorimetric Trigger Status and Prospects 2015 Run

- Machinery operated synchronously on LKr and HCAL
- Trigger based on total energy in LKr and HCAL1:

$$E_{HCAL1}^{tot} > 6 \text{ GeV} \& E_{LKr}^{tot} < 4 \text{ GeV}$$

Prospects for Next Run

- ► LKr clustering in space (X and Y) at trigger level
- Trigger on individual LKr cluster instead of total energy

Outline

3 First look at Data

4 Conclusions and Prospects

A look at min-bias 2014 and 2015 data

- One track candidates: Good χ² and 4(3)-chambers (in 2014)
- K⁺ kinematics: Beam mean values in 2014, GTK in 2015
- Results preliminary:
 - B field constant
 - Drift-Time to Radius relation from MC (Garfield)
 - Rough detector alignment
 - Rough t0 (refined in 2015)

Angle Track-Beam versus Track Momentum

Requesting in Time Kaon with KTAG

 K^+ in time with Track

No K^+ in time with Track

Checking Track Id using RICH

 K^+ in time with Track

Matched Ring in RICH

Removing Scattered Beam Particle Component

Squared Missing Mass

K⁺ in time with Track not scattered

Squared Missing Mass

More Discriminating Power using RICH mass

K⁺ in time with Track not scattered

Improving kinematics with GTK - 2015

Improving kinematics with GTK - 2015

Improving kinematics with GTK - 2015

Missing Mass Resolution

Conclusions and Prospects

- 2 The NA62 Experiment
- **3** First look at Data

Conclusions and Prospects

A much broader physics program

	Decay	Physics	Present limit (90% C.L.) / Result	NA62
-	$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
	$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
	$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
	$\pi^-e^+e^+$	LNV	6.4×10^{-10}	2×10^{-12}
	$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
	$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
	$e^- \nu \mu^+ \mu^+$	LNV	No data	10-12
	$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10-12
	$\pi^+\chi\chi$	New Particle	_	10-12
	$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10-11
	$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10-11
	$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10-12
	$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$	
-	R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
	$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
	$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
	$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)

keeping growing: axion search

Mathieu Perrin-Terrin (CERN)

Conclusion and Prospects

- $\mathcal{B}(\mathsf{K}^+ \to \pi^+ \nu \bar{\nu})$ an important observable in LHC era
- NA62 apparatus installed and first data taken
- Data quality shows good performance
- Ready for 2-3 years of physics data taking

Thanks you for your attention.