

Mesure gravitationnelle de l'antimatière

Patrick Nedelec

Lyon, France

Plan

- Motivations et buts
- Principe
- État de l'art
- Premiers résultats
- Futur proche ELENA

Matière-Antimatière et Univers

L. Willmann, K. Jungmann arXiv:1506.03001

Antimatière & (anti ?) gravité

- Contraintes exp. : M. Nieto & al. Phys. Rep. 205 (1991)
- Motivation pour l'antigravité : G. Chardin, Hyp. Int. 109, 83 (1997)
- Violations de Lorentz & CPT : V.A. Kostelecky et al., Phys. Rev. D83 (2011)
- DM & DE : gravitation. pol. & dipole of vaccuum : D.S.Hajdukovic, Astro Space Sciences 338, (March 2012)
- Nouvelles expériences :
 - ALPHA (CERN-AD 2013) ; AEGIS (CERN-AD6 -2012) ; Gbar (CERN-AD 2016)

Goals and Motivations

- Measure $\vec{P}=\vec{m}\times\vec{g}$ to 1% – Looking at free fall of cold \vec{H} atoms
- Test of WEP on antimatter in the Earth gravitational field
 - First (?) direct measurement
 - Need a large number of atoms (10⁵)
- Extra
 - Spectroscopy, Ps physics, H-Hbar comparison,...

Gravitational acceleration of antimatter

• No direct CPT test

– Weak Equivalence Principle

- No precise experimental test yet
- Highest precision
 With neutral
 - antimatter

The goal of the AEg Equivalence Princip of a \overline{H} beam will be a moiré deflectomete required position res

Fig.1 *Left*: Schem particles for a pos

Nuclear emulsions a resolution, better tha area nuclear emulsio in automated scannii emulsions which car This opens new appl

year	investigator	accuracy	method
500	Philoponus	"small"	drop tower
1585	Stevin	5 10 ⁻²	drop tower
1590	Galileo	2 10 ⁻²	pendulum,drop tower
1686	Newton	1 10 ⁻³	pendulum
1832	Bessel	2 10 ⁻⁵	pendulum
1910	Southerns	5 10 ⁻⁶	torsion balance
1918	Zeeman	3 10 ⁻⁸	torsion balance
1922	Eotvos	5 10 ⁻⁹	torsion balance
1923	Potter	3 10 ⁻⁹	pendulum
1935	Renner	2 10 ⁻⁹	torsion balance
1964	Dicke et al	3 10 ⁻¹¹	torsion balance
1972	Braginski,Panov	1 10 ⁻¹²	torsion balance
1976	Shapiro	1 10 ⁻¹²	lunar laser ranging
1987	Niebauer et al.,	1 10 ⁻¹⁰	drop tower
1989	Heckel	1 10 ⁻¹¹	torsion balance
1990	Adelberger	1 10 ⁻¹²	torsion balance
1999	Baebler	1 10 ⁻¹³	torsion balance
2016	Microscope	1 10 ⁻¹⁵	space
20??		1 10 ⁻¹⁸	space

Equivalence Principle Tests for Matter systems

Limites indirectes

Gravitational Clock Redshift for p/pbar

Limites directes actuelles

- Antimatière
 - « Limites » ALPHA

nature									
Home	About the journal	Authors and referees	Browse archive	Search					
nature.com ⊳ journal home ⊳ archive by date ⊳ april ⊳ full text									
NATURE COMMUNICATIONS ARTICLE OPEN									

• Expérience de sédimentation to measure the gravitational mass of antihydrogen

The ALPHA Collaboration & A. E. Charman

Pas de contrainte très forte !

Antihydrogène : production

Cold pbar : AEgIS recipe

$$\overline{p} + (Ps)^* \rightarrow \overline{H}^* + e^-$$

: Charge exchange reaction

AEgIS \overline{H} production way

• Antiprotons:

$$\overline{p} + (Ps)^* \rightarrow \overline{H}^* + e^-$$

- $-\overline{p}$ (5 MeV) from CERN AD
- Degrade & keep E<10 keV</p>
- Cool down (5T trap)
- Positronium

 $Ps^* = (e^+e^-)$

- e⁺ on nano-porous SiO₂, Rydberg states (n)
- Form $\overline{\mathbf{H}}$ by interaction of Ps with $\overline{\mathbf{p}}$ cloud – Xsection: $\boldsymbol{\sigma} \propto n^4$

AEgIS H production way

- Adding a p beam gives C-conjugate:
 p (2 keV)
 p+(Ps)^{*} → H^{*} + e⁺
- Form H by interaction of Ps with p cloud
- Comparison H-Hbar
- Extra needs
 - P beam, H-detector
 - Installed in 2014

$$Ps^* = (e^+e^-)$$

Measurement sensitivity

- 1% sensitivity achievable with ~ 600 annihilations
- Measurement
 resolution ~ 3 μm
- Cold antihydrogen necessary for bigger deflection and lower beam divergence.

Experimental site CERN Anti Decelerator(AD) area

Experimental setup

The goal of the AEgl Equivalence Principl of a \overline{H} beam will be a moiré deflectomete required position reso

Fig.1 Left: Schema particles for a posi

Nuclear emulsions ar resolution, better that area nuclear emulsion in automated scannin emulsions which can This opens new appli

pbar degrader

CERN AD area

Trapping antiprotons

Antiproton trapping

Anti-p catching after Al degrader in the 5T trap

Cooling by electrons

(anti)hydrogen detector

• Tune/Analyse traps

HDetCCD - image n. 1 [Run 10289]

Commissioned (2014) with e-,

pbar,

Radial compression of the Trapped plasma with RF field: Rotating Wall 1

Positrons line

Trapping: $\varepsilon = 0.14$ Accumulator Transfer line OE OB 4. 10⁷ e⁺ $\varepsilon = 0.9$ Surko type e⁺ accumulator N₂ in Ience Principl beam will be deflectomete ΤT T III d position reso 800 10⁻³ torr 10⁻⁴ torr 10⁻⁶ torr. OVC 700 UHV Jump amplitude (a.u.) B=0 151 600 base pressure \overline{H} Lifetime = 120 Moiré deflect 4.2 10^7 e+ 500 A Fig.1 Left: Schema 400 particles for a posi В base pressure 3 10^-9 mbar С 300 Lifetime = 31 ± 1 s Nuclear emulsions ar base pressur "fill" 1.1 10^7 e+ resolution, better that Lifetime = 16200 ²²Na source: > 50 - 100 mC 6.8 10^6 e+ area nuclear emulsion phase base pressure 1 10^-8 mbar in automated scannin 100 Moderation through solid neon Lifetime = 7 ± 1 s 2.8 10^6 e+ emulsions which can Accumulation in trap This opens new appl Buffer gas cooling 500 1000 15(Pulses from the tr

²²Na (14 mCi)

Solid Ne moderator: $\varepsilon = 2.10^{-2}$

Positronium formation

- Implantation of e⁺ in nano-porous target
 - $-SiO_2 8-14$ nm pores;T~75 K oPs
 - Tune pore size to tune Ps temp.

Positronium emission

Nanochannels size #0:4-7 nm #3:10-16 nm #1:8-12 nm #4:14-20 nm #2:8-14 nm #5:80-120 nmin silicon reach the silicon/silive interfate 8 (2008) silicon oxide layer because energetically ariazzi fet al., Phys. Rev. B 81, 2354 8 (2010)

Ps excitation

Two stages excitation

 − UV (205 nm): n=1→ 3
 − IR (1650-1700 nm): n=3→25-3

Phys. Rev. A 78 (2008) 052512; NIM B 269 (2011) 1527

Rydberg excitation

Т

The goal of the AEgIS ex Equivalence Principle (W of a \overline{H} beam will be meas a moiré deflectometer and required position resolution

Fig.1 *Left*: Schematic vie particles for a position se

Nuclear emulsions are phyresolution, better than 1 μ area nuclear emulsions we in automated scanning systemulsions which can be u This opens new application

Exposure of nucl

Hbar atoms Production

Charge exchange reaction: P+C

$$\overline{p} + (Ps)^* \rightarrow \overline{H}^* + e^-$$

– large xsection: $a_0 n^4$

- V(Hbar)=45m/s @T=100nK, n=30

Production zone

G. Consolati et al., Chem. Soc. Rev. 42, 3821 (2013)

Plasma manipulations in traps

Anti-H monitoring

400 scintillating fibers

Constraints:

- operate at 4 K, in high vacuum
- inside 1 T
- power dissipation < 10 W.

Fast Annihilation Particle Tracking resolution ~ 2 mm

Tests with cosmic rays \rightarrow almost no degradation

Nucl Instr. Meth A 732 (2013) 437

Hbar beam

 Accelerate an electric dipole (H*) by an electric field gradient

– Hbar bea along z axis @ 100 m/s

• Demonstrated with hydrogen

$$\vec{F} = -\frac{3}{2}ea_0 n \text{ (n-1) } \nabla \vec{E}$$

- n = 22, 23, 24
- Acceleration up to 2 x 10⁸ m/s² achieved

E. Vliegen and F. Merkt, J. Phys. B. 39 (2006) L241.

Gravity measurement

- Using a moiré deflectometer + position sensitive detector
- Detection a periodic shift (due to gravity)

Moiré deflectometer

- Proof of principle tested with pbar
 - D=25 mm, pitch=40um
 - Beam (pbar) 100-150 keV
 - Laser beam reference

The goal of the AE Equivalence Princir of a \overline{H} beam will be

Nuclear emuisions a resolution, better the area nuclear emulsion in automated scanni emulsions which ca This opens new app

Moiré deflectometer

• First demonstration of a moiré deflectometer technique with pbar

Detection

• We have tested (2012/2014)

emulsions

Prepare hybrid
 (emulsion+Si)
 detector

Silicon detector

Timepix3

AEGIS - current status

Achieved so far:

- Antiprotons (compression and fast transfer in 1 Tesla) + electron manipulation
- Positron transfer
- oPs, n=1; n=3; n>15 (Rydberg)
- H acceleration (Stark)
- Silicon sensor and emulsion detector tests
- Moiré deflectrometer and time resolution tests

To be done (in situ): 2015/16

- The first goal is to produce pulsed antihydrogen formation at 4 K
- Ps* spectroscopy

Further improvements (in situ & test labs): 2016/2017

- Ps formation, anti-H beam formation,
- Gravity setup **First measurement**
- Increase e+ (new source)
- Improve pbar cooling (C₂⁻ cooling)
- New pbar beam (ELENA)

Colder pbar

- Cold pbar to maximize flux
 - T~100 mK (7K now)
- Sympathetic laser cooling with negative ions

5. Sympathetic cooling of antiprotons by anions

Difficult to produce + Low cooling rate + spectroscopy unknown +photodetachement

Why not molecules!

2010: DeMille's group demonstrates laser collimation with a radiative force on SrF 2014: Show 3D cooling and trapping: Nature 512, 286–289 (21 August 2014)

LETTER

doi:10.1038/nature09443

Laser cooling of a diatomic molecule

E. S. Shuman¹, J. F. Barry¹ & D. DeMille¹

Like a 2 level atom: 98% of branching ratio

Example (best known molecule) C₂⁻

10 lasers 10 K → 100mK in 100 ms 30% losses (photodetachment) 2 possible cooling schemes

•
$$X^2 S_g^+ \rightarrow B^2 S_u^+$$

541, 598, 667, 753 nm probability (Franck-Condon) 72, 23, 3, 0.8

Ultra fast cooling : lifetime 70ns

high photodetachement s ~ 10^{-17} cm² \rightarrow rate I s/h n=1/s for I = 30mW/cm²

- $X^2 S_g^+ \rightarrow A^2 P_u$
- $2.53\ \mu m$ and $4.50\ \mu m$

Less laser needed slower cooling (100µs) No photodetachement

Easy to produce + Fast cooling rate + spectroscopy known + no-photodetachement

Extremely Low Energy Antiproton area

Pbar 100 keV En //

2r

Fig.1 Left: Sc particles for a

Nuclear emulsion resolution, better area nuclear emu in automated sca emulsions which This opens new a

Matter wave interferometer and deflectometer

$$\delta arphi_{
m beam} < arphi_{
m diffr} = \lambda_{
m dB}/d$$

v = 1000 m/s $d = 0.1 \ \mu\text{m}$ $\partial \varphi_{\text{beam}} < 4 \ \text{mrad}$ $T < 1 \ \text{mK}$

- diffraction requirement on angular beam divergence:

Interferences quantiques

Merci