SM and **BSM** physics after the **Higgs** discovery

Lecture 3

Michelangelo L. Mangano

TH Unit, Physics Department, CERN michelangelo.mangano@cern.ch

Few slides to address François' question on top tagging

CMS-JME-13-007

Jets at high E_T

Consider some features of jet structure at high E_T . Compare jets from:

- top quark (hadronic) decay
- bottom quark
- inclusive jets
- W hadronic decay

Jets are defined by anti- k_T . Use R=1 to define jet, then look inside at smaller R. No soft UE, no pileup. Generation: Alpgen + Herwig

NB: Inclusive jets here means jets from the QCD background. Thus they include a mixture of light quark and gluon jets, which varies vs E_T

Particle multiplicity distribution: $I/\sigma d\sigma/dN_{part}$

(particle: everything except neutrinos, neutral and charged, with stable π^0)

Average particle multiplicity shape: N_{part} (r<R)

Energy shape: E(r<R) / E(r<I)

Jet mass distribution: $I/\sigma d\sigma/dM_{jet}$

Average jet mass: M(particles with r<R)

Tracking down hyper-boosted top quarks, Larkowski et al, arXiv:1503.03347

		Cross section at $pp, \sqrt{s} = 100 \text{ TeV}$			
	Process	$p_T > 1 \text{ TeV}$	$p_T > 5 { m ~TeV}$	$p_T > 10 { m ~TeV}$	
	1100055	(pb)	(fb)	(ab)	
	$pp \rightarrow t\bar{t}$	12	2.8	24	
5	$pp \rightarrow t\bar{t}j$	52	14	94	
ode	$pp \rightarrow tj$	0.67	0.46	0.76	
M Igi	$pp \rightarrow t\bar{t}V$	0.40	0.30	3.7	
ŗ	$pp \rightarrow t\bar{t}H$	0.19	7.4e-02	0.65	
Ida	$pp \rightarrow t\bar{t}t\bar{t}$	0.17	8.5e-02	0.51	
tar gds	$pp \rightarrow jj$	3500	1000	11000	
BK	$pp \rightarrow jjV$	110	130	2200	
	$pp \rightarrow Z' \rightarrow t\bar{t} \ (m_{Z'} = 3 \text{ TeV})$	4.6	-	-	
	$pp \rightarrow Z' \rightarrow t\bar{t} \ (m_{Z'} = 15 \text{ TeV})$	7.1e-03	4.7	-	
M	$pp \rightarrow Z' \rightarrow t\bar{t} \ (m_{Z'} = 30 \text{ TeV})$	7.1 e-05	6.5e-02	48	
BS	$pp \to \tilde{t}\tilde{t} \to t\bar{t} + E_T \ (m_{\tilde{t}} = 1 \text{ TeV})$	0.49	7.8e-03	-	
	$pp \to \tilde{t}\tilde{t} \to t\bar{t} + E_T \ (m_{\tilde{t}} = 5 \text{ TeV})$	7.5e-04	0.063	-	
	$pp \to \tilde{t}\tilde{t} \to t\bar{t} + E_T \ (m_{\tilde{t}} = 10 \text{ TeV})$	4.4e-06	0.27e-03	0.024	
	$pp \to \tilde{g}\tilde{g} \to t\bar{t}t\bar{t} + \not\!\!\!E_T \ (m_{\tilde{g}} = 2 \text{ TeV})$	2.5	0.94	-	
	$pp \to \tilde{g}\tilde{g} \to t\bar{t}t\bar{t} + \not\!\!\!E_T \ (m_{\tilde{g}} = 5 \text{ TeV})$	2.7e-02	1.5	11	
	$pp \rightarrow \tilde{g}\tilde{g} \rightarrow t\bar{t}t\bar{t} + E_T \ (m_{\tilde{g}} = 10 \text{ TeV})$	1.9e-04	0.12	4.5	

Tracking down hyper-boosted top quarks, Larkowski et al, arXiv:1503.03347

ç					20% Top Ef	ficiency		
		$p_T { m cut}$	[2.5	$5,5]~{ m TeV}$	[5, 7.5] TeV	$[7.5,10]~{\rm TeV}$	$[10,15]~{\rm TeV}$	$[15,20]~{\rm TeV}$
ре	_1	CMS		2%	3%	4%	5%	6%
с <u>у</u> ,	gluons	FCC		1%	2%	2%	3%	4%
ien	ou o mlac	CMS		1%	2%	3%	5%	7%
ffic	quarks	FCC		0.5%	1%	1.5%	2%	4%
Ū Ū			-					
Å					CMS	FCC		
				$B_z(T)$	3.8	6.0		
				Length (m)	6	12		
				Radius (m)	1.3	2.6		
				ϵ_0	0.90	0.95		
				R^*	0.002	0.001		
				$\sigma(p_T)/p_T$	$0.2 \cdot p_T \; ({ m TeV/c})$	$0.02 \cdot p_T \; ({ m TeV}/c$	c)	
				$\sigma(\eta,\phi)$	0.002	0.001		

Table 2: Tracking-related parameters for the CMS and FCC setup in Delphes.

	CMS	FCC
$\sigma(E)/E$ (ECAL)	$7\%/\sqrt{E}\oplus 0.7\%$	$3\%/\sqrt{E}\oplus 0.3\%$
$\sigma(E)/E$ (HCAL)	$150\%/\sqrt{E}\oplus 5\%$	$50\%/\sqrt{E}\oplus 1\%$
$\eta \times \phi$ cell size (ECAL)	(0.02×0.02)	(0.01×0.01)
$\eta \times \phi$ cell size (HCAL)	(0.1×0.1)	(0.05×0.05)

Table 3: Calorimeter parameters for the CMS and FCC setup in Delphes.

The future LHC programme

HL-LHC physics reach and performance documented at

ATLAS

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

HL-LHC physics Workshop next week at CERN:

Key Higgs targets for the LHC

- Improve the precision of current BR and coupling measurements, with a O(%) target
- H couplings to top and to Higgs
 - These are the input ingredients to the "vacuum-stability" analysis
- Complete detection of H couplings to EW gauge bosons: $H \rightarrow Z\gamma$
- H couplings to 2nd generation
 - start from $H \rightarrow \mu \mu$
 - ideas to probe Hcc via exclusive $H \rightarrow J/\psi \gamma$
- Search for flavour violating Higgs couplings
- Search for additional, BSM, Higgs states (as in e.g. 2HDM)

Summary by A.Apyan at ECFA HL-LHC workshop

	Higgs bosons at √s=14TeV
HL-LHC, 3000fb ⁻¹	170M
VBF (all decays)	13M
ttH (all decays)	1.8M
Η->Ζγ	230k
Η->μμ	37k
HH (all)	121k

Coupling fit, assuming no BSM decays

		κ _γ	κ _w	κ _z	Kg	κ _b	κ _t	κ _τ	κ _{zγ}	κ _μ
300fb ⁻¹	ATLAS	[9,9]	[9,9]	[8,8]	[11,14]	[22,23]	[20,22]	[13,14]	[24,24]	[21,21]
300fb ⁻¹	CMS	[5,7]	[4,6]	[4,6]	[6,8]	[10,13]	[14,15]	[6,8]	[41,41]	[23,23]
3000fb ⁻¹	ATLAS	[4,5]	[4,5]	[4,4]	[5,9]	[10,12]	[8,11]	[9,10]	[14,14]	[7,8]
3000fb ⁻¹	CMS	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]

• ATLAS: [no theory uncert., full theory uncert.]

• CMS: [δ_{TH} scaled by I/2, δ_{exp} scaled by I/ $\sqrt{L}\,$, Syst as run I]

Higgs decays

5-10% precision in best cases

 $H \rightarrow \mu \mu$: first proof of H coupling to 2nd generation fermions

On theory uncertainties

ATLAS Simulation Preliminary

Figure 3: Relative uncertainty
expected for the determination of
coupling scale factor ratios λXY in
a generic fit without assumptions,
assuming a SM Higgs boson with a
mass of 125 GeV and with 300 fb ⁻¹
or 3000 fb ⁻¹ of 14 TeV LHC data.
The hashed areas indicate the
increase of the estimated error
due to current theory systematic
uncertainties.

Scenario	Status Deduced size of uncertainty to increase total uncertainty					nty			
	2014	by $\leq 10\%$ for 300 fb ⁻¹		by $\leq 10\%$ for 3000 fb ⁻¹					
Theory uncertainty (%)	[10–12]	κ _{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ _{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{\tau Z}$	λ_{tg}
$gg \rightarrow H$									
PDF	8	2	-	-	1.3	-	-	-	-
incl. QCD scale (MHOU)	7	2	-	-	1.1	-	-	-	-
p_T shape and $0j \rightarrow 1j$ mig.	10–20	-	3.5–7	-	-	1.5–3	-	-	-
$1j \rightarrow 2j$ mig.	13–28	-	-	6.5–14	-	3.3–7	-	-	-
$1j \rightarrow VBF 2j mig.$	18–58	-	-	-	-	-	6–19	-	-
VBF $2j \rightarrow VBF 3j$ mig.	12–38	-	-	-	-	-	-	6–19	-
VBF									
PDF	3.3	-	-	-	-	-	2.8	-	-
tīH									
PDF	9	-	-	-	-	-	-	-	3
incl. QCD scale (MHOU)	8	-	-	-	-	-	-	-	2

Table 6: Estimation of the deduced size of theory uncertainties, in percent (%), for different Higgs coupling measurements in the generic Model 15 from Table 5, requiring that each source of theory systematic uncertainty affects the measurement by less than 30% of the total experimental uncertainty and hence increase the total uncertainty by less than 10%. A dash "-" indicates that the theory uncertainty from existing calculations [10–12] is already sufficiently small to fulfill the condition above for some measurements. The same applies to theory uncertainties not mentioned in the table for any measurement. The impact of the jet-bin and p_T related uncertainties in $gg \rightarrow H$ depends on analysis selections and hence no single number can be quoted. Therefore the range of uncertainty values used in the different analysis is shown.

dominated by modeling

ATL-PHYS-PUB-2014-016

Modeling (e.g. jet veto efficiencies, pt spectra, ..) will be improved by comparison of TH calculations and data, using "clean" Higgs observables

There is already enough to start plotting pt(H), N_{jet} distribution in H production, etc.

Total and Differential Higgs Cross Sections from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$

g

ATLAS pp→H

aMC@NLO+PY8 + XH

Using H+jet to resolve the virtual loop in the ggH coupling

 \Rightarrow

 \Rightarrow

Azatov and Paul, arXiv: 1309.5273 Grojean, Salvioni, Schlaffer, Weiler, arXiv: 1312.3317

$$-\,\kappa_t\,rac{m_t}{v}\,ar{t}th+\kappa_grac{lpha_s}{12\pi}rac{h}{v}G^a_{\mu
u}G^{\mu
u\,a}$$

$$rac{\sigma_{
m incl}(\kappa_t,\kappa_g)}{\sigma_{
m incl}^{
m SM}}\simeq (\kappa_t+\kappa_g)^2$$

impossible to resolve from inclusive rate origin of possible deviations, and possibility of cancellations

In H+jet production instead:

 $\delta(p_T)$ and $\epsilon(p_T)$ with different p_T shapes

Examples of stealth stop effects on H pt spectrum

					$\Gamma(gg \to h)$ (1 + A) ²
Point	$m_{ ilde{t}_1}~[{ m GeV}]$	$m_{ ilde{t}_2}~[{ m GeV}]$	$A_t [\text{GeV}]$	Δ_t	$\frac{1}{\Gamma(aa \rightarrow b)aa} = (1 + \Delta_t)^2$
P_1	171	440	490	0.0026	$1 (gg \rightarrow n)_{\rm SM}$
P_2	192	1224	1220	0.013	\longrightarrow No impact on inclusive $gg \rightarrow H$ rate
P_3	226	484	532	0.015	
P_4	226	484	0	0.18	

Higgs selfcoupling: $HH \rightarrow bb\gamma\gamma$

2

60% precision on signal yield (if SM coupling)

High statistics may also allow new observables to be used Example, y_{top} from $pp \rightarrow tt H/pp \rightarrow tt Z$

To the extent that the qqbar \rightarrow tt Z/H contributions are subdominant:

- Identical production dynamics:

o correlated QCD corrections, correlated scale dependence o correlated α_s systematics

- $m_Z \sim m_H \Rightarrow$ almost identical kinematic boundaries:
 - o correlated PDF systematics o correlated m_{top} systematics

For a given y_{top} , we expect $\sigma(ttH)/\sigma(ttZ)$ to be predicted with great precision

23

NLO scale dependence:

Scan μ_R and μ_F independently, at $\mu_{R,F} = [0.5, 1, 2] \mu_0$, with $\mu_0 = m_H + 2m_t$

	δσ(ttH)	δσ(ttZ)	σ(ttH)/σ(ttZ)	δ[σ(tt H) /σ(tt Z)]
I 4 TeV	± 9.8%	± 12.3%	0.608	±2.6 %
I 00 TeV	± 9.6%	± 10.8%	0.589	±1.2%

PDF dependence (CTEQ6.6 -- similar for others)

	δσ(ttH)	δσ(ttZ)	δ[σ(ttH)/σ(tt Z)]
I4 TeV	± 4.8%	± 5.3%	±0.75%
I 00 TeV	± 2.7%	± 2.3%	±0.48 %

HL-LHC projection: $\delta \mu / \mu_{ATLAS}$ (tt[H $\rightarrow \gamma \gamma$]) ~ 15% => $\delta y_t / y_t$ ~ 8%

*The uncertainty reduction survives after applying kinematical cuts to the final states

* Both scale and PDF uncertainties will be reduced further in the next few years 24

LHC vs HL-LHC: extension of the discovery reach at high M

Direct stop se	arches (ATLAS Snowmass doc)
ATLAS Simulation	Preliminary
© 900 √s=14 TeV	= 300 fb ⁻¹ (<μ>=60) 5σ discovery • 300 fb ⁻¹ (<μ≥=60) 95% CL exclusion = 3000 fb ⁻¹ (<μ≥=140) 5σ discovery
E 700	•• 3000 fb ⁻¹ (<µ>=140) 95% CL exclusion ATLAS 8 TeV (1-lepton): 95% CL obs. limit ATLAS 8 TeV (0-lepton): 95% CL obs. limit =
600 combined	
500 0 and 1-lepton co	mbined
400	
300	
200	
100	95% excl @ 300/fb
0 ^E 200 400 60	0 800 1000 1200 1400
	m_{stop} [GeV]
	$50 \oplus 500/10$ $50 \oplus 3000/10$

5

EWino searches **Direct gluino searches** ATL-PHYS-PUB-2014-010 ATL-PHYS-PUB-2014-010 \tilde{g} - \tilde{g} production, $\tilde{g} \rightarrow qq \tilde{\chi}^0$ $m_{\tilde{\chi}_1^0}$ [GeV] 1000 LT $m_{\widetilde{\chi}_1^0} \, [\text{GeV}]$ ATLAS Simulation Preliminary $\sigma_{bkg} = 30\%$ 900 ATLAS Simulation Preliminary $\sigma_{bkg} = 10\%$ 2500 L dt = 3000 fb⁻¹, µ=140, 95% CL exclusion 800 - √s= 14 TeV L dt = 300, 3000 fb⁻¹, √s = 14 TeV _ dt = 3000 fb⁻¹, μ=140, 5σ discovery 0-lepton combined 3-lepton channel 2000 700F L dt = 300 fb⁻¹, µ=60, 95% CL exclusion ATLAS 20.3 fb⁻¹, **/**s = 8 TeV, 95% CL $\widetilde{\chi}^{\pm}_{+} \widetilde{\chi}^{0}_{2} \rightarrow W^{\pm} \widetilde{\chi}^{0}_{+} Z \widetilde{\chi}^{0}_{+}$ 95% CL limit, 3000 fb⁻¹, (μ) = 140 L dt = 300 fb⁻¹, μ =60, 5 σ discovery 600 95% CL limit, 300 fb⁻¹, (μ) = 60 L dt = 20.3 fb⁻¹, 95% CL exclusion 8 TeV. 5σ disc., 3000 fb⁻¹, (μ) = 140 1500 disc., 300 fb⁻¹, (µ) = 60 500E 400 1000 300 200 500 100 200 500 700 800 900 1200 300 400 600 1000 1100 0 500 1000 1500 2000 2500 3000 $m_{\widetilde{\chi}_{-}^{\pm}} = m_{\widetilde{\chi}_{-}^{0}}$ [GeV] m_ã [GeV]

Z' → e⁺e⁻

ATLAS/CMS HL docs	300/fb	3000/fb
95% excl (ATLAS)	6.5 TeV	7.8 TeV
5σ (CMS)	5.1 TeV	6.2 TeV

Message:

- What's been excluded at Lum will not be discovered at 10 x Lum
 - The extension of the discovery reach at high mass is not the key deliverable of HL-LHC
- The gain will come from higher precision, and the skillful use of experience and detector/trigger upgrades to boost sensitivity to rare/elusive processes, beyond the IOx Lumi increase
 - ➡ see Tevatron experience:
 - ▶ m_W, m_{top}, B_S oscillations ...
 - ▶ and with just a bit more of L: $B_S \rightarrow \mu^+ \mu^-$ and Higgs
- If anything, one could argue that what's needed is 10ab⁻¹, not 3ab⁻¹

Beyond the LHC: Future Circular Colliders

Dec 2011 Latest LHC data corner the Higgs boson to within a small mass window in the 115-130 GeV range

CERN-OPEN-2011-047 20 January 2012 Version 2.9 arXiv:1112.2518v1 [hep-ex]

A High Luminosity e⁺e⁻ Collider in the LHC tunnel to study the Higgs Boson

Alain Blondel¹, Frank Zimmermann² ¹DPNC, University of Geneva, Switzerland; ²CERN, Geneva, Switzerland

Abstract: We consider the possibility of a 120x120 GeV e+e- ring collider in the LHC tunnel. A luminosity of 10^{34} /cm²/s can be obtained with a luminosity life time of a few minutes. A high operation efficiency would require two machines: a low emittance collider storage ring and a separate accelerator injecting electrons and positrons into the storage ring to top up the beams every few minutes. A design inspired from the high luminosity b-factory design and from the LHeC design report is presented. Statistics of about 2x10⁴ HZ events per year per experiment can be collected for a Standard Higgs Boson mass of 115-130 GeV.

Summer 2012. Higgs discovery => submissions to European Strategy Group Symposium

From the upgrade of the accelerator infrastructure in the LHC tunnel

LEP3 — Higgs factory in the LHC tunnel Prepared by Frank Zimmermann, CERN, 9 April 2012; revised on 3 August 2012	CERN-ATS-2012-237
	High Energy LHC Document prepared for the European HEP strategy update
	Oliver Brüning, Brennan Goddard, Michelangelo Mangano*, Steve Myers, Lucio Rossi, Ezio Todesco and Frank Zimmerman
	CERN, Accelerator & Technology Sector * CERN, Physics Department

..... to the development of more ambitious goals

EDMS Nr: 1233485 Group reference: CERN/GS-SE 27 July 2012 PRE-FEASIBILITY STUDY FOR AN 80KM TUNNEL PROJECT AT CERN John Osborne (CERN), Caroline Waaijer (CERN), ARUP, GADZ Lipitan defer and other measurements Alain Blondel (University of Geneva), John Ellis (King's College London), Patrick Janot (CERN), Mike Koratzinos (University of Geneva), Marco Zanetti (MT), Frank Zimmermann (CERN)

Fall 2012 The idea caught up ...

000

m IIII

A

1

LPC 7

Editor - Stat

FCC 7

.

events T

Integrity at

Sport ▼

Accelerators for a Higgs Factory: Linear vs. Circular (HF2012) (14-November 16, 2012)

LHCC T CERN T

lubicz - Sea.

1

CONF 7

Malli Masta

CDF 7

NEWS TRAVEL T

Accelerator

US/Central -

C Reader

APPS 1

Indico [会议.

English 👻

Inspire

C

Login

+ log indico.fnal.gov/conferenceOtherViews.py?view=standard&confld=5775

TMP T

Doodle ▼

🗏 iCal export More 🗸

CEPC

... and two efforts are formalized and develop into studies towards Conceptual Design Reports

- potential intermediate step
- p-e (FCC-he) option
- 80-100 km infrastructure in Geneva area

23-29 March 2015 Marriott Georgetown Hotel US/Eastern timezone

See you in Rome next year! Note down April 11-15, 2016

International Workshop on Future High Energy Circular Colliders (16-December 17, 2013)

The Standard Model (SM) of particle physics can describe the strong, weak and electromagnetic interactions under the framework of quantum gauge field theory. The theoretical predictions of SM are in the strong **CEPC preCDR volumes** excellent agreement with the past experimental measurements. Especially the 2013 Nobel Prize in physics was awarded to F. Englert and P. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large

000

Hadron Collider".

but fundamental questions remain unanswered, from an understanding of the origin of the electroweak scale to the composition of the dark matter of the universe. An extended high energy experimental program beyond the planned running of the LHC will be crucia

address these questions. The Center for Future High Energy Physics is dedicated to carrying out detaile both the physics case and the design of possible future colliders. The immediate focus will be on circula electron-positron collider as Z and Higgs factory, and a high-energy proton-proton collider.

	China
al to fully	Previous worksh
ar colliders: an	Working Group

Ra

Image: A state of the state	C Reader
□ □ LPC ▼ FCC ▼ events ▼ Sport ▼ Doodle ▼ TMP ▼ LHCC ▼ CERN ▼ CONF ▼ CDF ▼ NEWS ▼	TRAVEL T Inspire APPS T MLM T
Editor - State Integrity at C CEPC Iubicz - Searc Malli Mastan	International Indico [会议区 +
A A A A A I A I A I A I A I A I A I A I	Asia/Shanghai 👻 🛛 M. Mangano 👻
International Workshop on Future High Energy Circu	lar Colliders
16-17 December 2013 IHEP Asia/Shanghal timezone	
• • • • • • • • • • • • • • • • • • •	2014)
Image: A state of the state	C Reader
Editor - State Integrity at C CEPC Iubicz - Searc Malli Mastan	TRAVEL ▼ Inspire APPS ▼ MLM ▼ >> 1st CFHEP Sy Indico I会议区 +
Image: A marked block in the second secon	Asia/Shanghai 👻 M. Mangano 👻
1st CFHEP Symposium on circular collider physics	
23-25 February 2014	

Preliminary Conceptual Design Reports from:

http://cepc.ihep.ac.cn/preCDR/volume.html

- Vol 2: Accelerator (ready)
- Vol 1: Physics and detectors (any day soon)

Physics workshops spontaneously organized all over the world document better than anything else the physics results, and the interest of the community

SLAC

Workshop on Physics at a 100 TeV Collider April 23-25, 2014, SLAC

www.slac.stanford.edu/th/100TeV.html

Hong Kong

The big questions

- What's the origin of Dark matter / energy ?
- What's the origin of matter/antimatter asymmetry in the universe?
- What's the origin of neutrino masses?
- What's the origin of EW symmetry breaking?
- What's the solution to the hierarchy problem?

Remark:

there is no experiment/facility, proposed or conceivable, in the lab or in space, accelerator or non-accelerator driven, which will guarantee an answer to any of the questions above

\Rightarrow

- target broad and well justified scenarios
- consider the potential of given facilities to provide conclusive answers to relevant (*and answerable*!) questions
 - can we identify forms of no-lose theorems ?
- weigh the value of knowledge that will be acquired, no matter what, by a given facility (the value of "measurements")

Most of the "big questions" touch directly on weak scale physics.

There are relevant, well defined questions, whose answer can be found exploring the TeV scale, and which can help guide the evaluation of the future colliders. E.g.

• Dark matter

is TeV-scale dynamics (e.g. WIMPs) at the origin of Dark Matter ?

Baryogenesis

did it arise at the cosmological EW phase transition ?

EW Symmetry Breaking

what's the underlying dynamics? weakly interacting? strongly interacting ? other interactions, players at the weak scale besides the SM Higgs ?

• Hierarchy problem

"natural" solution, at the TeV scale?

Key issue in addressing these questions, after LHC8 (and, hopefully not, but possibly after LHC14)

Why don't we see the new physics ?

- Is the mass scale beyond the LHC reach?
- Is the mass scale within LHC's reach, but final states are elusive to the direct search ?

These two scenarios are a priori equally likely, but they impact in different ways the future of HEP, and thus the assessment of the physics potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:

- precision
- sensitivity (to elusive signatures)
- extended energy/mass reach

Key goals of a future circular collider complex

- Thorough **measurements** of the Higgs boson and its dynamics
- Significant extension, via direct and indirect probes, of the search for physics phenomena beyond the SM

Fulfilling these goals will also require dedicated attention to crucial ingredients, such as

- the progress of theoretical calculations for precision physics
- the experimental data needed to improve the knowledge of fundamental inputs such as SM parameters, PDFs and to assess/reduce theoretical systematics
 - relevance of running e^+e^- at Z pole and tt threshold
 - relevance of ep programme
- Maximal exploitation of the facility, e.g.
 - physics with heavy ion collisions
 - physics with the injector complex

Reference literature

NB: click on underlined documents to access relevant URLs

- FCC-ee: "First Look at the Physics Case of TLEP", JHEP 1401 (2014) 164
- FCC-eh: no document as yet, see however
 - "<u>A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector</u>", J.Phys. G39 (2012) 075001
- FCC-hh: no document as yet (in progress, expected by end of 2015)
- **CEPC/SPPC**: Physics and Detectors pre-CDR completed, to be posted soon on
 - <u>http://cepc.ihep.ac.cn/preCDR/volume.html</u>

See also:

- <u>Physics Briefing Book to the European Strategy Group</u> (ESG 2013)
- Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier, arXiv:1401.6081

Higgs couplings programme

- Precise measurement of main Higgs couplings:
 - W,Z bosons, 3rd generation fermions (⇒probe existence of BSM effective couplings, e.g. due to non-elementary nature of H, determine CP properties, etc.)
- Couplings to 2nd and 1st generation (⇒universality of Higgs mass-generation mechanism)
- Higgs selfcouplings (⇒probe Higgs potential, to test possible underlying structure of Higgs, deviations from "mexican hat", etc)
- Couplings to non-SM objects (e.g. invisible decays)
- non-SM couplings (e.g. forbidden decays)

Projections

Projections

g hxy	FCC-ee
ZZ	0.16%
WW	0.85%
ΥY	I.7%
Zγ	
tt	
bb	0.88%
τт	0.94%
СС	I.0%
SS	H→Vγ, in progr.
μμ	6.4%
uu,dd	H→Vγ, in progr.
ee	e⁺e⁻→H, in progr.
НН	
BR _{exo}	0.48%

model indep. fit of 240 GeV data

Projections

<u>σ N/I0ab⁻¹</u>

gg→H	740 pb	7.4 G
VBF	82 pb	0.8 G
WH	16 pb	160 M
ZH	ll pb	110 M
ttH	38 pb	380 M
gg→HH	I.4 pb	14 M

 \rightarrow extrapolation from HL-LHC estimates

 \rightarrow from ttH/ttZ

FCC-hh ambitious but possible targets?

 \rightarrow extrapolation from HL-LHC estimates

 \rightarrow from HH \rightarrow bb $\gamma\gamma$

 \rightarrow for specific channels, like $H \rightarrow e\mu$, ...

gнхү	FCC-ee	FCC-hh
ZZ	0.16%	
WW	0.85%	
ΥΥ	I.7%	
Zγ		1% ?
tt		1% ?
bb	0.88%	
ττ	0.94%	
сс	I.0%	
SS	H→Vγ, in progr.	
μμ	6.4%	2% ?
uu,dd	H→Vγ, in progr.	
ee	e⁺e⁻→H, in progr.	
HH		5% ?
BR _{exo}	0.48%	< 0 ⁻⁶ ?

Higgs selfcouplings: pp→HH

- gg→HH (most promising?), qq→HHqq (via VBF)
- Reference benchmark process: $HH \rightarrow bb \gamma\gamma$
- Goal: 5% (or better) precision for SM selfcoupling

<i>НН →</i> b̄bγγ	Barr,Dolan,Englert,Lima, Spannowsky JHEP 1502 (2015) 016	Contino, Azatov, Panico, Son arXiv:1502.00539	He, Ren, Yao (follow-up of Snowmass study)
FCC _{@100TeV} 3/ab	30~40%	30%	15%
FCC _{@100TeV} 30/ab	10%	10%	5%
S/\sqrt{B}	8.4	15.2	16.5
Details	 ✓ λ_{HHH} modification only ✓ $c \rightarrow b \& j \rightarrow \gamma$ included ✓ Background systematics ○ $b\bar{b}\gamma\gamma$ not matched ✓ $m_{\gamma\gamma} = 125 \pm 1 \text{ GeV}$ 	✓ Full EFT approach ○ No $c \to b \& j \to \gamma$ ✓ Marginalized ✓ $b\bar{b}\gamma\gamma$ matched ✓ $m_{\gamma\gamma} = 125 \pm 5 \text{ GeV}$ ✓ Jet $/W_{had}$ veto	 ✓ λ_{HHH} modification only ✓ c → b & j → γ included ○ No marginalization ✓ b b̄γγ matched ✓ m_{γγ} = 125 ± 3 GeV

Work in progress to compare studies, harmonize performance assumptions, optimize, etc ⇒ ideal benchmarking framework M.Son, HH summary at FCC week

ttH/ttZ

 $p_{T,\ell^{\pm}}$

 Potential % theory precision for ttH coupling 	ttH (pb)	ttZ (pb)	ttH/ttZ
• Goal: % level exptl precision $\Rightarrow > 10$ K events	33.9 [^{+7.06%} -8.29%]Scale [^{+0.941%} -1.26%]PDF	57.9 [^{+8.93%} -9.46%]Scale [^{+0.901%} -1.20%]PDF	0.585 [^{+1.29%} -2.02%]Scale [^{+0.0526%} -0.0758%]PDF

- reference benchmark procs: $H \rightarrow bb$ and $H \rightarrow \gamma \gamma$
- establish requirements to cancel exptl syst's in ratios ttH/ttZ

tt + $(H \rightarrow \gamma \gamma)$: b tagging, lept eff/acc, γ eff, m_{$\gamma\gamma$},

$$\begin{split} p_{T,j} &> 25 \,\, {\rm GeV}, |\eta_j| < 2.5, \\ p_{T,b} &> 25 \,\, {\rm GeV}, |\eta_b| < 2.5, \\ p_{T,\gamma} &> 25 \,\, {\rm GeV}, |\eta_\gamma| < 2.5, \\ 120 \,\, {\rm GeV} < m_{\gamma\gamma} < 130 \,\, {\rm GeV}, \\ p_{T,\ell^\pm/\tau^\pm} &> 20 \,\, {\rm GeV}, |\eta_{\ell^\pm/\tau^\pm}| < 2.5, \\ E_{T,{\rm miss}} &> 20 \,\, {\rm GeV}, \\ \Delta R_{jj} &> 0.4, \Delta R_{bj} > 0.4, \Delta R_{bb} > 0.4. \end{split}$$

In 30ab⁻¹

- ~**IOOK** (semi-)leptonic ttH signal events
- ~**12K** irreducible bg (tt $\gamma\gamma$)

(H-S Shao, preliminary, H&BSM@100 TeV wshop)

ttH/ttZ

tt + (H→bb): b tagging in boosted configurations, lept eff/acc, m_{bb}, 115<M($b\bar{b}$)<135,P_T(b,j)>20,l_{\eta}(b,j)|<2.5

(H-S Shao, preliminary, H&BSM@100 TeV wshop)

$HH \rightarrow 4b$ reconstruction in FCC-eh

BSM Higgs Sectors

D.Curtin @ FCC week

Big Picture Motivations

- Naturalness
 - SUSY
 - pGB
 - uncolored?
- Electroweak Phase Transition
 - Baryogenesis?
- Higgs Portal
 - Dark Matter?
 - Generic BSM

UV Completions & Rest of Theory

IR Models

- SM+S (mixed/unmixed)
- SM+fermions
- 2HDM
- 2HDM+S
- SILH
-

Observables at Current + Future Colliders

- producing extra higgs states (incl. superpartners)
- Exotic Higgs Decays
- Electroweak Precision Observables
- Higgs coupling measurements
- Higgs portal direct production of new states
- Higgs self coupling measurements
- Zh cross section measurements

Interplay of EW precision tests (Tera-Z@FCC-ee), Higgs BR measurements (H@FCC-ee) and direct resonance searches (10-30 TeV, @ FCC-hh)

Minimal stealthy model for a strong EWPT

 $V_0 = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{1}{2}\mu_S^2 S^2 + \lambda_{HS} |H|^2 S^2 + \frac{1}{4}\lambda_S S^4$

D.Curtin @ FCC week

Unmixed SM+S. No exotic higgs decays, no higgs-singlet mixing, no EWPO,

⇒ Appearance of first "no-lose" arguments for classes of compelling scenarios of new physics

Scenarios for new physics

- Guidelines for the future
 - Search for all that's searchable!
 - Don't necessarily try to tie together under a single interpretation all TH issues and exptl puzzles
 - but still make reference to established conceptual frameworks as guiding principles to steer the exploration!

 Naturalness is one of the most compelling motivations for new physics near the weak scale.

 The LHC will eventually probe conventional "colorful" theories to (at best) the ~1% level.

But it will leave kinematic regions in conventional theories

 and all regions of more novel theories — essentially
 untested, and the status of naturalness truly unresolved.

 A Higgs factory & 100 TeV collider can uniformly probe natural symmetry-based theories to the ~1% level with powerful complementarity. Craig @ FCC week

N.Craig

24

Dark Matter

Our thinking has shifted K. Zurek, Aspen 2014

From a single, stable weakly interacting particle (WIMP, axion)

> Models: Supersymmetric light DM sectors, Secluded WIMPs, WIMPless DM, Asymmetric DM .. Production: freeze-in, freeze-out and decay, asymmetric abundance, non-thermal mechanicsms ..

 $M_p \sim 1 \text{ GeV}$

Standard Model

...to a hidden world with multiple states, new interactions

ASPEN 2014: https://indico.cern.ch/event/276476/

Evidence building up for self-interacting DM

• A really large scattering cross section! $\sigma \sim 1 \text{ cm}^2 (\text{m}_{\text{X}}/\text{g}) \sim 2 \times 10^{-24} \text{ cm}^2 (\text{m}_{\text{X}}/\text{GeV})$ For a WIMP: $\sigma \sim 10^{-38} \text{ cm}^2 (\text{m}_{\text{X}}/100 \text{ GeV})$

SIDM indicates a new mass scale

Hai-BoYu, ASPEN 2014: https://indico.cern.ch/event/276476/

More in general, interest is growing in scenarios for EWSB with rich sectors of states only coupled to the SM particles via <u>weakly interacting</u> "portals"

DM overclosure upper limits: $M_{WIMP} < 1.8 \text{ TeV} (g^2/0.3) \Rightarrow$ wino: m≤3 TeV higgsino: m≤1.1 TeV

In anomaly-mediated SUSY or split SUSY \Rightarrow

m_{gluino} ≈ 10 TeV

Towards no-lose arguments for Dark Matter scenarios

Coverage of pMSSM parameter space using DM constraints and direct searches at 14 and 100 TeV

15000

M(đ, g)

10000

Fraction of pMSSM

points allowed by

DM over-closure

0.8

From the global programme, I–2 orders of magnitude more precise measurements of EW parameters

x	Physics	Present precision		TLEP stat Syst Precision	TLEP key	Challenge
M _z MeV/c2	Input	91187.5 ±2.1	Z Line shape scan	0.005 MeV <±0.1 MeV	E_cal	QED corrections
Γ_{z} MeV/c2	Δρ (T) (no Δα!)	2495.2 ±2.3	Z Line shape scan	0.008 MeV <±0.1 MeV	E_cal	QED corrections
R	$\alpha_{s,b}$	20.767 ± 0.025	Z Peak	0.0001 ± 0.002 - 0.0002	Statistics	QED corrections
N _v	Unitarity of PMNS, sterile v's	2.984 ±0.008	Z Peak Z+γ(105/161)	0.00008 ±0.004 0.0004-0.001	->lumi meast Statistics	QED corrections to Bhabha scat.
R _b	δ_b	0.21629 ±0.00066	Z Peak	0.000003 ±0.000020 - 60	Statistics, small IP	Hemisphere correlations
\mathbf{A}_{LR}	Δρ, ε _{3 ,} Δα (Τ, S)	0.1514 ±0.0022	Z peak, polarized	±0.000015	4 bunch scheme	Design experiment
M _W MeV/c2	Δρ, ε _{3 ,} ε _{2,} Δα (T, S, Ü)	80385 ± <mark>15</mark>	Threshold (161 GeV)	0.3 MeV <1 MeV	E_cal & Statistics	QED corections
m _{top} 4/1 MeV/c2	² ที่อิ่นt	173200 ± <mark>900</mark>	Threshold ^{el FC} scan	ែ ∫ឃុំរដ្ឋ Circular liders	E_cal & Statistics	Theory limit at 100 MeV?

10 ab⁻¹ at 100 TeV imply:

 10^{10} Higgs bosons => 10^4 x today

 10^{12} top quarks => 5 10^4 x today

=> 10^{12} W bosons from top decays => probe rare W decays ? => 10^{12} b hadrons from top decays (particle/antiparticle tagged) => 10^{11} t \rightarrow W \rightarrow taus => can solve the B(W \rightarrow TV) puzzle ? => few x 10^{11} t \rightarrow W \rightarrow charm hadrons

=> plenty of new studies and opportunities for measurements become available few examples

Running Electroweak Couplings as a Probe of New Physics

D.Alves, J. Galloway, J.Ruderman, J.Walsh arXiv: 1410.6810

Example, tt at large mass

σ _{LO} [pb]	No M _{tt} cut	M _{tt} > I TeV	M _{tt} > 2 TeV	M _{tt} > 3TeV	M _{tt} > 5 TeV
LHC-14	560 pb	14.5 pb	0.31 pb	0.017 pb	9.93 10 ⁻⁵ pb
FCC-100	19700 pb (x35)	1510 pb (x100)	135.9 pb (x440)	27.2 pb (x1600)	2.86 pb (x30000)

Applications: top dipole moments

Extension of the discovery reach at high mass

Example: discovery reach of **W' with SM-like couplings**

NB For SM-like Z', $\sigma_{Z'} BR_{lept} \sim 0.1 \times \sigma_{W'} BR_{lept}$, \Rightarrow rescale lum by ~ 10

At L=O(ab⁻¹), Lum x 10 $\Rightarrow \sim$ M + 7 TeV

ab⁻¹

Lum x $10 \Rightarrow$ relative gain much larger at low mass than at high mass

See Hinchliffe et al, arXiv:1504.06108, for a more detailed discussion of luminosity goals for the 100 TeV collider

Physics with heavy ions

- **Conveners**: Dainese, Masciocchi (exp), Armesto, Salgado, Wiedemann (TH)
- Mailing list: fcc-ions@cern.ch
- Twiki page:
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Heavylons

Topics discussed so far (4 workshops, see Indico agendas for details)

- Charm at chemical equilibrium?
- Probes of gluon saturation at small x
- Nuclear PDFs
- Flows

. . .

- Hard probes, from jets to top quark production
- Ultraperipheral collisions

Physics with injectors

- **Conveners**: Goddard (accelerator), Isidori (theory), Teubert (experiments)
- Mailing list: fcc-experiments-physin@cern.ch

Topics discussed so far (4 mtgs, see Indico agendas for details)

- Physics prospects with polarized protons, and implications for the injector complex
- Low-energy proton ring for proton electric dipole moment measurement
- Collisions in the high-energy booster for high-rate studies of LFV τ decays
- Rare K decays
- Crystal beam extraction
- Test beam requirements for future detectors