# Low radioactive backgrounds in the Edelweiss dark matter search

Pia Loaiza

LAL

20th October, 2015

# Outline

### Brief introduction: dark matter and direct detection

- 2 The Edelweiss experiment
- Backgrounds from natural radioactivity
  - Low radioactivities: how to measure?
  - Low background gamma spectrometry
  - Rejection with Edelweiss detectors
  - 4 Edelweiss-III first data
- 5 Low mass WIMP search in Edelweiss-III

6 Best current limits at high mass: Xenon experiments

# Why dark matter?

Dark matter seems to be part of a consistent picture, the 'standard cosmological model'



Galaxies rotational curves  $\rightarrow$  90% to 99% of the mass in galaxies is non-visible Clusters Dynamics in galaxy clusters  $\rightarrow$   $\rho_{masse}$  >>  $\rho_{lum}$  CMB  $\Lambda CDM$  model  $\rightarrow$   $\Omega_{CDM}h^2{=}0.1198$   $\pm$  0.0015

Hypothesis: dark matter is in the form of particles produced in the Big-Bang WIMPs:  $\Omega_{WIMP}h^2 \sim 1/\sigma_A v \rightarrow \text{relic density} \sim \text{same order of magnitude as dark matter}$ 

- stable
- heavy : 10 -1000 GeV
- neutral
- interacting via weak force

# Direct dark matter detection : basic principle

#### Search for nuclear recoils, measure their energy and interaction rate

Galactic WIMP v\_z-220km/s Scattered WIMP WIMP

#### Recoil energy:

$$E_R^{max} = \frac{m_\chi v_\chi^2}{2} \cdot \frac{4m_\chi m_N}{(m_\chi + m_N)^2} = \mathcal{O}(10 \text{keV}).$$

Interaction rate:

$$R \propto rac{
ho_0 \sigma}{m_\chi m_N} \langle v_\chi 
angle < 1 event/ton/year.$$

 $\rho_0$  - WIMP local density,  $\sigma$  - elastic-scattering cross-section ,  $m_\chi$  - WIMP mass,  $m_N$  - target nucleus mass,  $\langle v_\chi \rangle$  - average WIMP speed relative to target

# Radioactive background of most materials is much higher than event rate

We need:

- low radioactivity
- powerful rejection
- large detector mass

# Background: Basics

#### Cosmic rays and natural radioactivity dominate the backgrounds

| Source                                                             | Reduction                      |
|--------------------------------------------------------------------|--------------------------------|
| Cosmic rays                                                        | Go underground                 |
| Natural radioactivity in rock + concrete ( $\gamma$ , $\beta$ , n) | Shieldings                     |
| Radioactivity from materials used                                  | Material selection + Rejection |
| in the detector construction                                       |                                |

Dark matter search in the low energy region ([0-200]keV) of natural radioactivity spectrum:



5 / 53

Brief introduction: dark matter and direct detection

## 2 The Edelweiss experiment

#### Backgrounds from natural radioactivity

- Low radioactivities: how to measure?
- Low background gamma spectrometry
- Rejection with Edelweiss detectors

#### Edelweiss-III first data

#### Low mass WIMP search in Edelweiss-III

## Best current limits at high mass: Xenon experiments





#### Laboratoire Souterrain de Modane:

- Deepest underground laboratory in Europe. Depth: 4700 m.w.e
- 4 muons/m<sup>2</sup>/day
- $\bullet~\sim 10^{-6}~\text{neutrons/cm}^2/\text{s}$  (E>1 MeV)



# Edelweiss-III setup

#### Shielding:

- Clean room + deradonized air: 10 Bq/m<sup>3</sup>  $\rightarrow$  30 mBq/m<sup>3</sup>
- Active muon veto (n from  $\mu$ 's), 97.7% geometric coverage  $N^{\mu-n} = 0.6 \stackrel{+0.7}{-0.6}$  evts (90% CL, 3000 kg.d)
- External **polyethylene** shield (n) **50 cm**
- External lead shield (β,γ) 20 cm (18 cm + 2 cm roman lead)
- Extra 15 cm internal roman lead (at 1K)

#### Cryogenic installation (18 mK):

- reversed geometry cryostat
- can host up to 40 kg of detectors



# Edelweiss Germanium detectors

#### Two measuring channels:

- Heat (phonons) at 18 mK with NTD thermal sensors (Neutron Transmutation Doped sensor)
- Ionization at few V/cm

# Event by event identification by ratio $Q = E_{\text{IONIZATION}} / E_{\text{RECOIL}}$

- $\mathsf{Q}=1$  for electron recoils
- $Q \sim 0.3$  for nuclear recoils

Most backgrounds  $(e, \gamma)$  produce electron recoils WIMPs and neutrons produce nuclear recoils



Brief introduction: dark matter and direct detection

## 2 The Edelweiss experiment

### Backgrounds from natural radioactivity

- Low radioactivities: how to measure?
- Low background gamma spectrometry
- Rejection with Edelweiss detectors

#### Edelweiss-III first data

#### 5 Low mass WIMP search in Edelweiss-III

## Best current limits at high mass: Xenon experiments

## Backgrounds left after shieldings: natural radioactivity

1. Neutrons, single scatter, from <sup>238</sup>U and <sup>232</sup>Th fission and ( $\alpha$ , n) reactions in materials (Only background if we would have ideal detectors)



# Backgrounds left after shieldings: natural radioactivity



2. Events leaking in the NR band: Pb-210 on detector surface or directly in contact with the detectors, **"surface events"** (Detectors are not ideal!)



3. Gammas due to non-perfect rejection (even if less than  $5.8 \cdot 10^{-6} \text{ NR}/\gamma$ )

#### How low is 'low'?

 $\rightarrow$  The radioactivity levels of materials should be about a factor  $10^4$  -  $10^5$  lower than 'normal' levels

 $\rightarrow$  Necessity of sensitivities down to mBq/kg- 100  $\mu {\rm Bq/kg}$ 

## How to measure? Uranium chain



## How to measure? Uranium chain



# How to measure? Thorium chain



$$Det.Lim. = \frac{1}{\varepsilon \cdot M \cdot P_{\gamma}} \sqrt{\frac{B \cdot \Delta E}{t}}$$

# Sensitivity improvement through intrinsic background reduction by:

- material selection of all components
- new configurations
- shielding improvements

In collaboration avec CANBERRA, France

- $\varepsilon = efficiency$
- M: Source mass
- t: Measuring time
- B: Background
- $\Delta E$ : Energy resolution
- $P_{\gamma} =$  Probability of emission

# Low-background HPGe developed at LSM

#### Mafalda, planar:



#### **Obelix**, coaxial:





- diam= 94 mm
- mass=3.0 kg
- endcap + higher efficiency for high energies
- + large sample masses
- dead layer

ightarrow 'high' energies 100 keV  $< E_{\gamma} <$  3000 keV (backgrounds relevant to 2eta0u)

# HPGe at LSM: intrinsic backgrounds

#### MAFALDA:

Energy resolution: 890 eV at 122 keV







Background counting rate for single lines  $\sim 1 \text{ count/day}$ Integral counting rate [20 - 1500] keV: 140 counts/day (Mafalda), [40-3000]keV: 209 counts/day (Obelix)

Pia Loaiza (LAL)

20th October, 2015 17 / 53

# Worldwide HPGe backgrounds and sensitivities



- Best sensitivities: GeMPI detectors developed by MPI Heidelberg and placed at LNGS
- Integral background of Obelix (LSM): factor 2 higher than GeMPI  $\rightarrow$  among most sensitive of the world

| Detector            | Material     | Mass<br>(g) | Time<br>(h) | <sup>210</sup> Pb<br>(mBq/kg) | <sup>234</sup> Th( <sup>238</sup> U)<br>(mBq/kg) | <sup>226</sup> Ra<br>(mBq/kg)          | <sup>228</sup> Th<br>(mBq/kg) |
|---------------------|--------------|-------------|-------------|-------------------------------|--------------------------------------------------|----------------------------------------|-------------------------------|
| Mafalda<br>(Planar) | Aluminium    | 1025        | 132         | < 9                           | <3                                               | < 0.9                                  | 1.0±0.3                       |
| Obelix<br>(Coaxial) | Polyethylene | 3900        | 672         | -                             |                                                  | 0.65 ± 0.08                            | 0.30±0.07                     |
| GeMPI2<br>(Coaxial) | Copper       | 125000      | 2412        | -                             | <7                                               | <0.016                                 | <0.012                        |
|                     |              |             |             | Y Y                           | (                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                               |
|                     |              |             |             | Low ene<br>46 keV, 63         | ergies:<br>keV, 92 keV                           | Higher er<br>200 keV < I               | nergies:<br>E < 3000 keV      |

- For about 1 month measurement and  ${\cal O}(kg) \to$  present sensitivities  $\sim$  500  $\mu Bq/kg$  in  $^{226}Ra$  and  $^{228}Th$
- Best sensitivities can reach 20  $\mu$ Bq/kg in <sup>226</sup>Ra and <sup>228</sup>Th

| Bolo<br>plates<br>New PE (LK)<br>Roman F | pion<br>bles | ments by $\gamma$ spect | rometry, otherwise s | tated  |        |
|------------------------------------------|--------------|-------------------------|----------------------|--------|--------|
| Component(Material)                      | Mass         | Radioactivity in        | materials (mBg/kg)   |        |        |
|                                          | (1/m)        | 23811                   | 226 0                | 228 Th | 210 ph |
|                                          | (rs)         | 0                       | I\d                  | 111    | FU     |



| Component(Material) | Mass | Radioactivity in | materials (mBq/kg) |                   |                   |
|---------------------|------|------------------|--------------------|-------------------|-------------------|
| ,                   | (kg) | <sup>238</sup> U | <sup>226</sup> Ra  | <sup>228</sup> Th | <sup>210</sup> Pb |



| Bolo<br>plates<br>New PE (1k)<br>Roman Pte | ton<br>es<br>Measurer | <ul> <li>Ext<br/>red</li> <li>Nev</li> </ul> | trometry, otherwise | rethylene shi<br>eutrons (fro<br>eens made o<br>e stated | ield below detectors to<br>m materials)<br>if NOSV copper |
|--------------------------------------------|-----------------------|----------------------------------------------|---------------------|----------------------------------------------------------|-----------------------------------------------------------|
| Component(Material)                        | Mass                  | Radioactivity in                             | n materials (mBq/l  | <g)< td=""><td></td></g)<>                               |                                                           |
|                                            | (kg)                  | <sup>230</sup> U                             | <sup>220</sup> Ra   | <sup>220</sup> Th                                        | <sup>210</sup> Pb                                         |

| Screens,casings (Cu)            | 295 | <7            | <0.016    | <0.012    | -  |
|---------------------------------|-----|---------------|-----------|-----------|----|
|                                 |     | By NAA :      |           |           |    |
| Shielding (PE:CH <sub>2</sub> ) | 151 | $0.8 \pm 0.2$ | 0.65±0.08 | 0.30±0.07 | <3 |



- Extra 10 cm polyethylene shield below detectors to reduce internal neutrons (from materials)
- New thermal screens made of NOSV copper
- New kapton cables and connectors, 1K-10 mK (steel), 10mK-10 mK (Cu)



Measurements by  $\gamma$  spectrometry, otherwise stated

| Component(Material)             | Mass  | Radioactivity in m | naterials (mBq/kg) |                   |                   |
|---------------------------------|-------|--------------------|--------------------|-------------------|-------------------|
| ,                               | (kg)  | <sup>238</sup> U   | <sup>226</sup> Ra  | <sup>228</sup> Th | <sup>210</sup> Pb |
| Cables (apical,Cu)              | 0.5   | -                  | <6                 | 12±3              | 549±111           |
|                                 |       | By ICPMS :         |                    |                   |                   |
| Connectors (brass, CuBe)        | 0.018 | 1055 ± 211         | 32±20              | <53               | $18132 \pm 2720$  |
| Screens,casings (Cu)            | 295   | <7<br>By NAA :     | <0.016             | <0.012            | -                 |
| Shielding (PE:CH <sub>2</sub> ) | 151   | 0.8 ± 0.2          | 0.65±0.08          | 0.30±0.07         | <3                |



• Extra 10 cm polyethylene shield below detectors to reduce internal neutrons (from materials)

19 / 53

- New thermal screens made of NOSV copper
- New kapton cables and connectors, 1K-10 mK (steel), 10mK-10 mK (Cu)



Measurements by  $\gamma$  spectrometry, otherwise stated

| Component(Material)             | Mass  | s Radioactivity in materials (mBq/kg)                  |                   |                   |                   |
|---------------------------------|-------|--------------------------------------------------------|-------------------|-------------------|-------------------|
|                                 | (kg)  | <sup>238</sup> U                                       | <sup>226</sup> Ra | <sup>228</sup> Th | <sup>210</sup> Pb |
| Cables (apical,Cu)              | 0.5   | -                                                      | <6                | 12±3              | $549 \pm 111$     |
|                                 |       | By ICPMS :                                             |                   |                   |                   |
| Connectors (brass, CuBe)        | 0.018 | 1055 ± 211                                             | 32±20             | <53               | 18132 ±2720       |
| Screws (Brass)                  | 0.4   | <16                                                    | 8±5               | <5                | $524 \pm 102$     |
| Screens, casings (Cu)           | 295   | <7                                                     | < 0.016           | < 0.012           | -                 |
|                                 |       | By NAA :                                               |                   |                   |                   |
| Shielding (PE:CH <sub>2</sub> ) | 151   | 0.8 ± 0.2                                              | $0.65 {\pm} 0.08$ | 0.30±0.07         | <3                |
| Connectors (Al, resin)          | 428   | $2635 \pm 406$                                         | <186              | 450±44            | 6014±460          |
| Cables (PTFE)                   | 3.5   | -                                                      | 4±3               | 5±2               | $138 \pm 53$      |
| Cold electronics (PCB)          | 0.6   | $7507 \pm 1537$                                        | $7565 \pm 158$    | $10117 \pm 132$   | $13986 \pm 3094$  |
| Pia Loaiza (LAL)                | [     | Dark matter and low radioactivities 20th October, 2015 |                   |                   | October, 2015     |

# From Edelweiss-II to Edelweiss-III: the detectors

ID400:



FID800:



Diameter: 7 cm

|                           | Edelweiss-II      | Edelweiss-III          |
|---------------------------|-------------------|------------------------|
| Data taking               | 2008 - 2010       | July 2014 $ ightarrow$ |
| Detector type             | ID-200 g/ID-400 g | FID-800 g              |
| Number of total detectors | 10                | 36                     |
| Fiducial mass/detector    | 160 g             | 600 g                  |
| Total fiducial mass       | 1.6 kg            | 14 kg                  |

Edelweiss-II final results: Phys. Lett. B (2011) 329

# Edelweiss-III FID Ge bolometers



- $\bullet~\sim$  820 g HPGe crystals
- 2 NTDs
- (F)ully (I)nter(D)igitized aluminium electrodes

ightarrow vetoing surface events ( $\sim$  600 g fiducial mass)



# Surface rejection





Dark matter and low radioactivities

## Surface rejection in Edelweiss-II and Edelweiss-III



# Gamma rejection in Edelweiss-II and Edelweiss-III





- $4.12 \times 10^5 \gamma$  events,  $E_R > 20 \text{ keV}$
- No events in NR band,  $E_R > 20 \text{ keV}$

ID gamma rejection factor :  $3 \cdot 10^{-5} \text{ NR}/\gamma$ , E<sub>R</sub>[20 -200] keV FID gamma rejection factor :  $<5.58\cdot10^{-6}~{\rm NR}/\gamma$ , at 90% CL

Brief introduction: dark matter and direct detection

## 2 The Edelweiss experiment

#### Backgrounds from natural radioactivity

- Low radioactivities: how to measure?
- Low background gamma spectrometry
- Rejection with Edelweiss detectors

## 4 Edelweiss-III first data

#### Low mass WIMP search in Edelweiss-III

## Best current limits at high mass: Xenon experiments

# Edelweiss-III: 36 new FIDs produced...



Dark matter and low radioactivities

# Edelweiss-III: ...and installed (June 2014)





# Current status of the Edelweiss-III data taking



- WIMP data taking July 2014-April 2015
- Restart in June 2015
- 36 detectors installed, while 24 FID800 were used (cabled)
   → more than 14 kg of fiducial mass in Ge
- facility able to acquire 3000 kg.d per 6 months

# Gamma background

- Geant4 Monte Carlo (Edelweiss-II and Edelweiss-III) give the expected bolometers events resulting from the radioactivity in set-up components
- Radioactivity measurements are used to normalize the expected rates





# Gamma background in Edelweiss-III

| [20-200] keV, evts/kg/d                                        |            |            |  |  |
|----------------------------------------------------------------|------------|------------|--|--|
| Volume:                                                        | Fiducial   | Total      |  |  |
| Copper                                                         | 7.3 (10%)  | 12.8 (10%) |  |  |
| Brass                                                          | 14.7 (20%) | 22.9 (18%) |  |  |
| Brass in Cu                                                    | 6.9 (9.4%) | 10.3 (8%)  |  |  |
| Polyethylene                                                   | 2.6 (3.5%) | 4.6 (3.6%) |  |  |
| Teflon                                                         | 2.2 (3%)   | 4.0 (3%)   |  |  |
| Connectors<br>(housing + pins + pressfit<br>+ socket + kapton) | 39.7 (54%) | 63.1 (50%) |  |  |
| Total <b>MC</b>                                                | 78         | 125        |  |  |
| Total data                                                     | 70         | 128        |  |  |

Highest contribution  $\sim$ 50% from connectors at 10 mK (delrin PTFE + Mill-Max + kapton)

For 1 year and 24 FIDs, 5431 kg d  $\rightarrow$  < 2.2  $\gamma$  expected Actual Wimp search data: ~1000 kg d  $\rightarrow$  < 0.4  $\gamma$ expected

Not yet limiting the Edelweiss-III sensitivity



Comparison by Material - Fiducial Energy



# Neutron background from materials

Neutrons are produced internally in the set-up through ( $\alpha$ ,n) interactions from radioimpurities in construction materials and from fission of <sup>238</sup>U.

- 1) Energy and neutron yield calculated via SOURCES4A
- 2) Neutrons are propagated in the set-up using GEANT4 code
- 3) Absolute values derived from radiopurity measurements

|                                    |              | 24 FID= 15 kg  | 36 FID=22 kg   |                           |
|------------------------------------|--------------|----------------|----------------|---------------------------|
|                                    |              | 1 year running | 1 year running |                           |
|                                    |              | 5431 kg d      | 8030 kg d      | Uncertainties from        |
| ${\sf E}_{th} > 10~{\sf keV}$      | Singles      | $1.4\pm0.1$    | $2.2\pm0.2$    | statistics (simulation) + |
|                                    | 10 - 200 keV |                |                |                           |
| ${\sf E}_{th_{aux}} < 3~{ m keV}$  | Multiples    | $4.8\pm0.5$    | $7.9\pm0.8$    | uncertainties on          |
| $E_{th} > 20 \text{ keV}$          | Singles      | $1.1\pm0.1$    | $1.7\pm0.2$    | radiopurity measurements  |
|                                    | 20 - 200 keV |                |                | when available            |
| ${\sf E}_{th_{aux}} < 10~{ m keV}$ | Multiples    | $3.2\pm0.3$    | $5.2\pm0.5$    |                           |

Highest contribution, about 50%, from CuBe part (press-fit) in connectors at 10 mK

Neutrons from shieldings and cavern walls  $\rightarrow$  negligible.

# Exclusion limits of direct dark matter searches for spin-independent $\sigma_{WIMP,N}$ , status at June 2015



2 regions:

- 'High mass' 20 GeV TeV  $\rightarrow$  Xenon dual phase detectors (LUX and XENON100)
- 'Low mass' 2 20 GeV  $\rightarrow$  cryogenic detectors (CRESST, SuperCDMS, Edelweiss)

#### Brief introduction: dark matter and direct detection

## 2 The Edelweiss experiment

#### Backgrounds from natural radioactivity

- Low radioactivities: how to measure?
- Low background gamma spectrometry
- Rejection with Edelweiss detectors

#### Edelweiss-III first data

#### 5 Low mass WIMP search in Edelweiss-III

## Best current limits at high mass: Xenon experiments

## Low mass WIMP search

- Eight months of data taking
- Eight detectors with good baseline and low threshold
- 582 kg d fiducial



|              | FID 837    |
|--------------|------------|
| threshold    | 3.6 keVnr  |
| FWHM ion fid | 0.54 keVee |
| FWHM heat    | 0.33 keVee |

# Boosted Decision Tree to discriminate signal/background:

- Define ROI:
  - -singles - 1.0 < E<sub>heat</sub> < 15 keVee - 0 < E<sub>ion</sub> < 8 keVee
    - $0 < \Box_{ion} < 0$  Ke
  - $E_{veto} < 5\sigma$
- Single discriminating variable combining 6 variables: 4 ionization channels + 2 heat
- Background models are data driven :
- Energy spectra modelled from regions without signal

## Low mass WIMP search

- Eight months of data taking
- Eight detectors with good baseline and low threshold
- 582 kg d fiducial



|              | FID 837    |
|--------------|------------|
| threshold    | 3.6 keVnr  |
| FWHM ion fid | 0.54 keVee |
| FWHM heat    | 0.33 keVee |

# Boosted Decision Tree to discriminate signal/background:

Define ROI:

-singles -  $1.0 < E_{heat} < 15$  keVee -  $0 < E_{ion} < 8$  keVee

- 
$$E_{veto} < 5\sigma$$

- Single discriminating variable combining 6 variables: 4 ionization channels + 2 heat
- Background models are data driven :
- Energy spectra modelled from regions without signal
- 'New' background: heat only events. Dominating background (origin under investigation, probably mechanical origin)

## Low mass BDT results

- One BDT output per WIMP mass
- A cut is applied on BDT output to maximize background rejection





@5GeV: only 4 detectors @1keVee heat threshold



Heat energy (keVee)

3.0

2.5

2.0

1.5

Fiducial ion

0.0

-0.5

ionisation (keVee)

# Exclusion limits for spin-independent $\sigma_{WIMP,N}$ , low mass WIMPs, status at September 2015



Edelweiss-III:

- Preliminary limit
- Without background subtraction
- Poisson limit, 90% CL
- Leading cryogenic experiment  $M_{\ensuremath{\textit{WiMP}}} > 12 \mbox{ GeV}/c^2$

## Edelweiss prospects

- DAQ resumed in June 2015
- High WIMP mass analysis on going, results soon

#### Low mass

- R&D to reduce heat-only events
- HV studies (Neganov-Luke amplification):
  - R&D on heat/ionization sensor, goal  $\sigma_{heat}$ = 100 eV,  $\sigma_{ion}$ = 100 eV
  - Goal 350 kg d



#### Brief introduction: dark matter and direct detection

## 2 The Edelweiss experiment

#### Backgrounds from natural radioactivity

- Low radioactivities: how to measure?
- Low background gamma spectrometry
- Rejection with Edelweiss detectors

#### 4 Edelweiss-III first data

#### Low mass WIMP search in Edelweiss-III

## 6 Best current limits at high mass: Xenon experiments

# Xenon experiments: principle of operation

Dual phase liquid gas Time Projection Chamber



- -Time difference btw S1 and S2 gives information on vertical position
- Shape of PMT signals gives information on horizontal position

# LUX and LZ

#### LUX

- At SURF, USA (4300 m.w.e)
- 370 kg of liquid Xe ightarrow 118 kg fiducial
- 04/2013 08/2013 : 85.3 livedays

First results: Akerib et al, PRL, 112, 091303 (2014) Backg model: Akerib et al, Astrop. Phys. 62 (2015) 33



#### The LZ Dark Matter Experiment



Hamamatsu R8778 PMTs (61 top, 61 bottom)

#### LZ:

- 20 times LUX mass  $\rightarrow$  7 tonnes, 5.6 tons fiducial
- Construction 2015 2016
- Operation 2016- 2019(?)

Partially funded by DOE and NSF (3 dark matter experiments funded by G2: LZ,SuperCDMS and ADMX)

# Xenon100 and Xenon1T

#### Xenon100

- At LNGS, Italy (3800 m.w.e)
- 161 kg of liquid Xe  $\rightarrow$  34 kg fiducial
- 2012 : 225 livedays

Astrop.Phys. 35 (2012) 573 PRL 109, 181301 (2012)





- 3 tonnes liquid Xe, 1 ton fiducial
- Construction on-going
- Ready in 2015

Project approved and funded ( $\sim$  50% NSF ,  $\sim$  50% Europe + Israel)

Pia Loaiza (LAL)

Dark matter and low radioactivities

# Xenon experiments

Best limits at high mass. Why?

- Self-shielding: the detector design allows to define a large veto region to exclude background events at the detector edges

-large mass





LUX Electron Recoil background density in the WIMP region:

| Source            | Background Rate $[mDRU_{ee}]$       |
|-------------------|-------------------------------------|
| $\gamma$ rays     | $1.8 \pm 0.2_{stat} \pm 0.3_{sys}$  |
| <sup>127</sup> Xe | $0.5 \pm 0.02_{stat} \pm 0.1_{sys}$ |
| <sup>214</sup> Pb | 0.11 - 0.22 (0.20 expected)         |
| $^{85}$ Kr        | $0.17 \pm 0.10_{\mathrm{Sys}}$      |
| Total predicted   | $2.6 \pm 0.2_{stat} \pm 0.4_{sys}$  |
| Total observed    | $3.6 \pm 0.3_{\mathrm{stat}}$       |
| Total= 16         | 50 evts in 118 kg and 85 days       |

LUX backgrounds, in  $10^{-3}$  evts/kg/day/keV<sub>ee</sub>:

1) Dominant: Electron recoils

2) Neutrons from  $(\alpha, n)$  reactions and fission from <sup>238</sup>U. About 250 nDRU expected (negligible)

#### Backgrounds:

- $\gamma$  rays: Gammas from detector components.  $\sim$  1.2 mDRU<sub>ee</sub> from PMTs
- Intrinsic Xe sources:
  - Cosmogenic activation of Xe: <sup>127</sup>Xe, <sup>129m</sup>Xe, <sup>131m</sup>Xe and <sup>133</sup>Xe
  - Radon. <sup>214</sup>Pb/<sup>212</sup>Pb not tagged
  - <sup>85</sup>Kr

# LUX calibrations and data



Using average discrimination for S1 with 50% NR acceptance ightarrow 0.64  $\pm$  0.16 events expected from ER leakage

 $\mathbf{D}^{\mathsf{I}}_{\mathsf{D}} \xrightarrow{\mathsf{I}}_{\mathsf{D}} \underbrace{\mathsf{D}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}}}_{\mathsf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{D}} \mathbf{D}_{\mathsf{D}} \mathbf{D}} \mathbf{$ 

Use Profile likelihood analysis to compare data with predictions: 4 observables: S1, S2, r and z

# Ge bolometers and Liquid Xe experiments

| Ge bolometers:<br>segmentation          | LXenon: large volur                           | nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Maximid DRU (69 breadys, 89 eff)              | No. Sector Secto | (2013)<br>n100 (2012)<br>veissII (2011/12)<br>veissIII (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fiducial mass<br>118 kg<br>34<br>1.6 kg<br>14 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Exposure                                | Before discrimination:<br>Backgroun           | nd Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ightarrow About 3 orde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rs of magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LUX 118 kg × 85<br>EdelweissII 384 kg.d | (evts)<br>days = 10030 kg.d 160<br>26880      | $\frac{(\text{evts/kg/day})}{1.6 \cdot 10^{-2}}$ 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | difference, largely screening in LXe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | thanks to self                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Exposure                                | After discrimination:<br>Background<br>(evts) | Background<br>(evts/kg/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ightarrow About 2 orde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ers of magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LUX 10030 kg                            | d 0.64 (50% NR acceptance)                    | $6.4 \cdot 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | difference + fidu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cial mass $ ightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EdelweissII 384 kg.d                    | 5<br>can reach lower <b>thresholds</b> than b | $1.3 \cdot 10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spin independent of the second | Any analysis of the property of the second s |

20th October, 2015

42 / 53

# Summary

- Low radioactivity measurements are a key ingredient in rare event searches, like dark matter and neutrinoless double beta decay
  - Low background gamma-ray spectrometry allows to asses a large part of the sub-chains of <sup>238</sup>U and <sup>232</sup>Th decay chains as well as a large number of isotopes.
  - Present sensitivities, for about 1 month measurement and  ${\cal O}(kg)\to\sim$  500  $\mu Bq/kg$  in  $^{226}Ra$  and  $^{228}Th$
- Edelweiss-II has been upgraded to Edelweiss-III with:
  - new internal shielding and materials, upgraded cryogenic and electronics
  - new version of interdigit detectors:  $\mathsf{FIDs} \to \mathsf{larger}$  fiducial mass and better gamma rejection
- Data taking between July 2014-April 2015, restarted in June 2015
- 24 FIDs = more than 14 kg fiducial mass
- Efforts concentrated in low mass WIMP search. New competitive exclusion plot
- Xenon experiments (LUX and XENON100) provide best spin-independent limits at high mass thanks to:
  - Self-shielding that allows to define a large veto region to exclude background events
  - Large fiducial volumes

Back-up



# From Edelweiss-II to Edelweiss-III: electronics and cryogenics



- New electronics (FET 100K and digitisation at 300 K), J Low Temp. Phys 167 (2012) 645
- New cryogenics to reduce microphonics

# Neutrino background



Dark matter and low radioactivities

20th October, 2015 47 / 53



# Low mass WIMP data : background models

Use regions without signal to build the model

#### Bulk gammas:

-Fiducial selection - Tabulated parametrisation of (E. #evts): main lines cosmogenic lines 10.37 keV, 9.66 keV, 8.98 keV + L-shell lines from <sup>68</sup>Ge, <sup>68</sup>Ga, <sup>65</sup>Zn



Events hitting top electrodes FID825

#### Heat only events:

-Dominating background (under investigation probably mechanical origin)



#### Surface events:

-Tabulated parametrisation from heat spectra on both surfaces of each detector



#### WIMP search

#### Full Inter-Digitized 800 g HP-Ge Detector

Height: 4 cm



Diameter: 7 cm

### $0\nu\beta\beta$ of $^{100}Mo$

#### 313g ZnMo04 bolometer



| Source            | Background Rate [mDRU <sub>ee</sub> ] |
|-------------------|---------------------------------------|
| $\gamma$ rays     | $1.8 \pm 0.2_{stat} \pm 0.3_{svs}$    |
| <sup>127</sup> Xe | $0.5 \pm 0.02_{stat} \pm 0.1_{sys}$   |
| <sup>214</sup> Pb | 0.11 - 0.22 (0.20 expected)           |
| $^{85}$ Kr        | $0.17 \pm 0.10_{\mathrm{Sys}}$        |
| Total predicted   | $2.6 \pm 0.2_{stat} \pm 0.4_{sys}$    |
| Total observed    | $3.6 \pm 0.3_{\mathrm{stat}}$         |

LUX backgrounds, in  $10^{-3}$  evts/kg/day/keVee:

Total= 160 evts in 118 kg and 85 days

1) Dominant: Electron recoils from gammas from detector components and in Xe target

2) Neutrons from  $(\alpha, n)$  reactions and fission from <sup>238</sup>U. About 250 nDRU expected (negligeable)

#### $\gamma$ rays: Gammas from detector components:

|                                    | Counting Results [mBq/unit] |               |               |                   |               | In 118 k      |                             |           |
|------------------------------------|-----------------------------|---------------|---------------|-------------------|---------------|---------------|-----------------------------|-----------|
| Component                          | Counting Unit               | $^{238}$ U    | $^{226}Ra$    | <sup>232</sup> Th | $^{40}$ K     | 60Co          | Other                       |           |
| PMTs                               | PMT                         | <22           | $9.5 \pm 0.6$ | $2.7 \pm 0.3$     | $66 \pm 6$    | $2.6 \pm 0.2$ |                             | ~1.2 mDRI |
| PMT bases                          | base                        | $1.0 \pm 0.4$ | $1.4 \pm 0.2$ | $0.13 \pm 0.01$   | $1.2 \pm 0.4$ | < 0.03        |                             | 1.2 1101  |
| Field ring supports (inner panels) | kg                          |               | < 0.5         | < 0.35            |               |               |                             |           |
| Field ring supports (outer panels) | kg                          |               | < 6.3         | <3.1              |               |               |                             |           |
| Reflector panels (main)            | kg                          |               | $<\!3$        | <1                |               |               |                             |           |
| Reflector panels (grid supports)   | kg                          |               | <5            | <1.3              |               |               |                             |           |
| Cryostats                          | kg                          | $4.9 \pm 1.2$ | < 0.37        | < 0.8             | < 1.6         |               |                             |           |
| Cryostats                          | kg                          |               |               |                   |               |               | 4.4±0.3 ( <sup>46</sup> Sc) | ~0.5 mDRI |
| Electric field grids               | kg                          |               | $1.4 \pm 0.1$ | $0.23 \pm 0.07$   | < 0.4         | $1.4 \pm 0.1$ |                             |           |
| Field shaping rings                | kg                          |               | < 0.5         | < 0.8             |               | < 0.3         |                             |           |
| PMT mounts                         | kg                          |               | <2.2          | <2.9              |               | < 1.7         |                             |           |
| Weir                               | kg                          |               | < 0.4         | < 0.2             |               | < 0.17        |                             |           |
| Superinsulation                    | kg                          | $<\!270$      | $73 \pm 4$    | $14 \pm 3$        | $640 \pm 60$  |               |                             |           |
| Thermal insulation                 | kg                          |               | $130 \pm 20$  | $55 \pm 10$       | < 100         |               |                             |           |

# Intrinsic Xe sources: cosmogenics and <sup>85</sup>Kr

#### Cosmogenic activation of Xe

- Four isotopes of interest <sup>127</sup>Xe, <sup>129m</sup>Xe, <sup>131m</sup>Xe and <sup>133</sup>Xe
- <sup>127</sup>Xe in WIMP search region :
  - EC decay with gammas 203 keV or 375 keV
  - X-rays: 33.2 keV<sub>ee</sub>, 5.3 keV<sub>ee</sub>, 1.1 keV<sub>ee</sub>, 0.19 keV<sub>ee</sub>
  - Half-life= 36 days
  - Accounts for 0.5 mDRU (over 3.6 mDRU) over Run 3



## <sup>85</sup>Kr

- Commercial Xe contains about 0.1 ppm of  $^{\it nat}{\rm Kr}$  (wich contains  $^{85}{\rm Kr})$
- Removal using dedicated charcoal column : purity of 4 ppt ( $10^{-12}$  g  $^{\it nat} {\rm Kr/g}$  Xe)
- Accounts for 0.17 mDRU (over 3.6 mDRU) over Run 3  $\,$



# Intrinsic Xe sources: Radon

- Rn present in bulk Xe and daughters deposited on inner surfaces

- Tracking via alphas (very large S1 signal)
- <sup>214</sup>Bi <sup>214</sup>Po vetoed through delayed coincidence
- Actual background left: betas in bulk not associated to an alpha ( $^{214}{\rm Pb}$  and  $^{212}{\rm Pb})$
- Accounts for 0.2 mDRU (over 3.6 mDRU) over Run 3



