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Abstract

Automatic differentiation can greatly speed up prototyping and implementation of ma-
chine learning models. However, most packages are implicitly domain-specific, requiring
the use of a restricted mini-language for specifying functions. We introduce autograd, a
package which differentiates standard Python and Numpy code, and can differentiate code
containing while loops, branches, closures, classes and even its own gradient evaluations.

1. Introduction

Much of machine learning boils down to specifying a model by defining a scalar function of
many parameters — a loss function or a probability density — and optimizing or sampling
from this model. For such high-dimensional problems, gradients are indispensable.

The interesting and fun part of machine learning research is coming up with such models
and exploring their properties. Writing gradients and inference procedures can be a time-
consuming nuisance that slows down the research process.

Gradients, in principle, can always be computed automatically given the function it-
self. Indeed, many different automatic differentiation packages for machine learning ex-
ist. For a review, see Baydin et al. (2015). However, the most commonly used packages,
Theano (Bastien et al., 2012) and Torch (Collobert et al., 2002), tend to have several draw-
backs that make them difficult to use:

• They require learning a new syntax in which to express basic operations, essentially
acting as interpreters for a restricted mini-language.

• These mini-languages tend to have very limited control flow operations - for example,
Theano’s scan() function.

• These mini-languages tend to have limited support for array indexing and other helper
functions.

Our vision is that it should be possible to write down the loss function using one’s
favorite scientific computing language, and have gradients available automatically. Modern
numerical libraries have many convenience functions that make it easy to express scientific
computations at a high level of abstraction. Access to diverse language features allows code
to be written in more modular, readable and maintainable ways.

Autograd is a project to bring automatic differentiation to Python, Numpy (Oliphant,
2007) and Scipy (Jones et al., 2001–) code written using the facilities that this modern
scientific computing framework offers.
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2. A simple example

import autograd.numpy as np # Thinly−wrapped numpy
from autograd import grad # grad(f) returns f’

def f(x): # Define a function
y = np.exp(-x)

return (1.0 - y) / ( 1.0 + y)

D_f = grad(f) # Obtain gradient function
D2_f = grad(D_f) # 2nd derivative
D3_f = grad(D2_f) # 3rd derivative
D4_f = grad(D3_f) # etc.
D5_f = grad(D4_f)

D6_f = grad(D5_f)

import matplotlib.pyplot as plt

x = np.linspace(-7, 7, 200)

plt.plot(x, map(f, x),

x, map(D_f , x),

x, map(D2_f , x),

x, map(D3_f , x),

x, map(D4_f , x),

x, map(D5_f , x),

x, map(D6_f , x))

plt.show()

3. Features

Autograd can handle Python code containing control flow primitives such as for loops,
while loops, recursion, if statements, closures, classes, list indexing, dictionary indexing,
arrays, array slicing and broadcasting.

It can also differentiate most of Numpy’s functions, and some of the Scipy library. For
example, it can differentiate Fourier transforms, eigenvector computations, solving linear
systems, convolutions, logsumexp, sorting, einsum, statistical functions, trigonometric func-
tions, and various matrix operations. It can differentiate functions having complex values
or arbitrarily nested tuples as input. GPU support and assignment to arrays is planned.
It can also differentiate its own differentiation code, letting it compute arbitrarily higher
derivatives.

4. Source Code

Autograd’s source code and documentation is available at github.com/HIPS/autograd.
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