

### **High-Precision Comparisons of the Fundamental Properties of Protons and Antiprotons**

# **Stefan Ulmer** RIKEN Stationed at CERN





**UNIVERSITAT** MAINZ





MAX-PLANCK-GESELLSCHAFT









## **BASE – Collaboration**

- Mainz: Measurement of the magnetic moment of the proton (Ulmer, Blaum, Walz, Quint).
- CERN-AD: Measurement of the magnetic moment of the antiproton and proton/antiproton q/m ratio (Ulmer, Yamazaki, Blaum, Matsuda).
- Hannover/PTB: QLEDS-laser cooling project (Ospelkaus, Ulmer)





## Outline

Introduction / physics motivation

• Experimental principle







- Measurements:
  - q/m and magnetic moment

• Results







# **Testing CPT Invariance**

• CPT invariance is the most fundamental discrete symmetry in the Standard Model of particle physics.



### P C T

 CPT theorem => fundamental properties of matter and antimatter conjugates are identical => Comparing these properties precisely => stringent test of CPT symmetry

# **B**SE Matter / Antimatter Asymmetry

apart from the fundamental nature of CPT symmetry:

Matter dominance of the Universe, and thus the physics of our existence, has yet to be understood.

Observed SM-CP violation is by **orders of magnitude too small** to explain matter excess observed in our Universe.

CPT violation is (in some models) a possible source for the observed baryon asymmetry.



CPT test with fractional precision of  $10^{-18}$  available... why continue measuring?

## **Concept of CPT violation**

• Basic idea: Add CPT violating term to a Hamiltonian based on Standard Model and treat as a perturbation theory

=> Absolute energy change  $\Delta E$  will be derived

$$H' = H_{SM} + \Delta V \implies \langle \psi^* | \Delta V | \psi \rangle = \Delta E$$
  
different C's  
System based on SM  
$$CPT \text{ violating term} \longrightarrow \mathcal{L}_p = \begin{pmatrix} \lambda \\ M \end{pmatrix} \langle T \rangle \bar{\psi} \Gamma(i\partial)^k \psi$$
  
Kostelecky et al.

- Absolute energy resolution (normalized to m-scale) might be a more appropriate measure to characterize the sensitivity of an experiment with respect to CPT violation.
- Single particle measurements in Penning traps give high energy resolution.

|                                     | Relative precision | Energy resolution          | SME Figure of merit |
|-------------------------------------|--------------------|----------------------------|---------------------|
| Kaon $\Delta m$                     | $\sim 10^{-18}$    | ${\sim}10^{-9}~{\rm eV}$   | ~ 10 <sup>-18</sup> |
| p-p̄ q/m                            | $\sim 10^{-11}$    | ${\sim}10^{-18}~{\rm eV}$  | ~ 10 <sup>-26</sup> |
| p- $\overline{\mathrm{p}}$ g-factor | $\sim 10^{-6}$     | $\sim 10^{-12} \text{ eV}$ | ~ 10 <sup>-21</sup> |







### Measurements

Experiments performed with single particles in Penning traps

#### **Cyclotron Motion**

**Larmor Precession** 



Determination of the g-factor reduces to measurement of a frequency ratio -> in principle a very simple experiment -> full control, no theoretical corrections



### **Non-destructive ion detection**



Image current:

$$l_p = \omega \ q \ \frac{r}{D}$$

About 10 fA signal needs to be detected!

Resonance frequency:

$$res = \frac{1}{\sqrt{L C}}$$

Matched to one of the particle frequencies

ω

Acts as effective resistance in resonance:

$$R_p = \omega L Q$$



**Consequences:** 

- A signal at the eigenfrequency of the particle can be detected
- The particle dissipates energy and is resitively cooled

#### **Cooled to Thermal Equilibrium:**

- Particle shorts thermal noise of the detector
- Frequency measurements at low amplitudes

$$U = R_p I_p$$

$$\tau = \frac{m}{q^2} \frac{D^2}{R_p}$$

S. Ulmer et al., Phys. Rev. Lett 107, 130005 (2011).



### **Larmor Frequency**

Measurement based on continuous Stern Gerlach effect.

Energy of magnetic dipole in magnetic field

$$\Phi_M = -(\overrightarrow{\mu_p} \cdot \overrightarrow{B})$$

Leading order magnetic field correction

$$B_z = B_0 + B_2 \left( z^2 - \frac{\rho^2}{2} \right)$$

This term adds a spin dependent quadratic axial potential -> Axial frequency becomes function of spin state

$$\Delta v_z \sim \frac{\mu_p B_2}{m_p v_z} := \alpha_p \frac{B_2}{v_z}$$

- Very difficult for the proton/antiproton system.

 $B_2 \sim 300000 \ T/m^2$ 

- Most extreme magnetic conditions ever applied to single particle.  $\Delta v_z \sim 170 \ mHz$ 

Position (a. lin. u.)

#### **Observe driven spin transitions -> measurement of resonance**



# SE Larmor Frequency Measurement

Measure axial frequency stability:

1.) reference measurement with detuned drive on,

2.) measurement with resonant drive on.

#### Spin flips add up

$$\Xi_{SF} = \sqrt{\Xi_{ref}^2 + P_{SF} \Delta v_{z,SF}^2}$$

S. Ulmer, C. C. Rodegheri, K. Blaum, H. Kracke, A. Mooser, W. Quint, J. Walz , Phys. Rev. Lett 106, 253001 (2011)



g/2 = 2.792 848 (24) Rodegheri et al., NJP 14, 063011, (2012) g/2 = 2.792 846 (7) di Sciacca et al., PRL 108, 153001 (2012)

#### Statistical Method: Limited by the strong magnetic bottle.

### BSE Divide and Conquer - Double Trap Method

#### Idea: Separate spin state analysis and precision frequency measurements.



H. Häffner, Phys. Rev. Lett.85, 5308 (2000)



## The Challenge



Magnetic bottle coupling:  $\Delta v_z = \frac{1}{4\pi^2 m v_z} \frac{B_2}{B_0} (dE_+ + dE_-) \rightarrow 1 \text{ Hz/}\mu\text{eV}$ 

One cyclotron quantum jump (70 neV) shifts axial frequency by 70mHz

Tiny heating of the axial mode results in significant fluctuation of the axial oscillation frequency. -> Three cyclotron quanta (0.2 μeV) -> fidelity to 50%



$$R_{n\to n\pm 1} = \frac{q^2}{2m_{\rm P}\,\hbar\omega} \left(n + \frac{1}{2} \pm \frac{1}{2}\right) \underbrace{\int_{\mathbb{R}} dt' \,\mathrm{e}^{\pm\mathrm{i}\omega t} \left\langle E^{(1)}(t)E^{(1)}(t+t')\right\rangle}_{S(\pm\omega)}$$

**Important message:** heating rates scale with the cyclotron quantum number!!!

Our heating rates correspond to noise on electrodes of some pV/Hz<sup>1/2</sup>.

### Single Spin Flips and Double Trap Method

- Improvement of apparatus, trap wiring, quality of detection systems (lower noise, faster measuring cycles).
- Based on Bayesian filter -> fidelity of > 90% achieved



# **B**SE The Magnetic Moment of the Proton

• Sweeping excitation frequency -> g factor resonance



#### LETTER

doi:10.1038/nature13388

### Direct high-precision measurement of the magnetic moment of the proton

A. Mooser<sup>1,2</sup><sup>†</sup>, S. Ulmer<sup>3</sup>, K. Blaum<sup>4</sup>, K. Franke<sup>3,4</sup>, H. Kracke<sup>1,2</sup>, C. Leiteritz<sup>1</sup>, W. Quint<sup>5,6</sup>, C. C. Rodegheri<sup>1,4</sup>, C. Smorra<sup>3</sup> & J. Walz<sup>1,2</sup>

A. Mooser, S. Ulmer, K. Blaum, K. Franke, H. Kracke, C. Leiteritz, W. Quint, C. Smorra, J.Walz, **Nature 509**, **596 (2014)** 

Measurement listed as one of the top 10 RIKEN research highlights of the last 3 years

#### Line width:

due to drive-saturation and residual B<sub>2</sub> in the precision trap.

### g/2 = 2.792847350 (7) (6)

- First direct high precision measurement of the proton magnetic moment.
- Improves 42 year old MASER value by factor of 2.5
- Value in agreement with accepted CODATA value, but 2.5 times more precise
- One measurement -> 4 months

#### THE BASE EXPERIMENT

Summe

dedicated to the highest level of precision! This innovative experiment can be operated with protons and/or antiprotons. It allows single particle control leading to the determination of the g-factor or the charge-to-mass ratio with outrageous sensitivity.

um



PRECISION TRAP used for the determination of the cyclotron and the Larmor frequency

annin a star a star a star

ANALYSIS TRAP used for the spin state analysis

of the proton or antiproton

 $rac{\mu_{\overline{p}}}{\mu_p}$ 







Antibaryon Baryon Symmetry Experiment



### **BASE at CERN**



35 million antiprotons5.3 MeV kinetic energy150 ns pulse length



### **BASE in the AD-facility**







**Reservoir Trap**: Stores a cloud of antiprotons, suspends single antiprotons for measurements. Trap is "power failure save". **Precision Trap**: Homogeneous field for frequency measurements,  $B_2 < 0.5 \mu T / mm^2$ (**10 x improved**) **Cooling Trap**: Fast cooling of the cyclotron motion,  $1/\gamma < 4 s$  (**10 x improved**) **Analysis Trap**: Inhomogeneous field for the detection of antiproton spin flips,  $B_2 = 300$ mT / mm<sup>2</sup>





### **The BASE Machine**





- Experiment still running.
- Consume typically 1 particle per month (mainly software glitches and human errors).

C. Smorra et al., A reservoir trap for antiprotons, Int. Journ. Mass. Spec. 389, 10 (2015).



### H<sup>-</sup> ions



- details of H<sup>-</sup> trapping have yet to be understood.
- managed to prepare a clean composite cloud of H<sup>-</sup> and antiprotons.



### **Benefits of H<sup>-</sup> ions**

- Slightly inhomogeneous magnetic field.
- Offset potentials on the electrodes of the cryogenic trap.
- Change of polarity leads to position shift of the particle.
- Systematic uncertainties due to the particle position are large (~10<sup>-9</sup>)
- For protons (polarity inversion (dV=10V)) much larger as for H- ions (dV=0.005V).



## H<sup>-</sup> ions: perfect proxies for protons

Measure free cyclotron frequencies of antiproton and H<sup>-</sup> ion.

\*using proton=>opposite charge=>position in the trap changes

Take a ratio of measured cyclotron frequency of antiproton  $v_{c\overline{p}}$  to H<sup>-</sup> ion  $v_{cH^-}$  => reduces to antiproton to proton charge-tomass ratio  $R = \frac{v_{c\overline{p}}}{v_{cH^{-}}} = \frac{(q/m)_{\overline{p}}}{(q/m)_{H^{-}}} x \frac{R/2\pi}{B/2\pi} = \frac{(q/m)_{\overline{p}}}{(q/m)_{H^{-}}}$  Magnetic field cancels out!

H ion

$$R_{\text{theo}} = 1.0010892187542(2)$$

Comparable measurements were carried out by the TRAP collaboration in 1990 to 1998

 $m_{\rm H^-} = m_{\rm p}(1 + 2\frac{m_{\rm e}}{m_{\rm p}} - \frac{E_{\rm b}}{m_{\rm p}} - \frac{E_{\rm a}}{m_{\rm p}} + \frac{\alpha_{\rm pol,H^-} B_0^2}{m_{\rm p}})$ 

G. Gabrielse, A. Khabbaz, D.S. Hall, C. Heimann, H. Kalinowsky, and W. Jhe, Phys. Rev. Lett. 82, 3198 (1999).

antiproton



## **Elegant Techniques**

Based on reservoir extraction technique and developed methods to prepare negative hydrogen ions we prepared an interesting set of initial conditions



Comparison of proton/antiproton cyclotron frequencies: achieved in a not fully optimized single night test measurement a precision of 400 ppt!!!

#### In one night 3 times more precise than 1996 TRAP value



### **Systematic Studies**

#### AD – Magnetic Noise



100 ppb fluctuation by the AD Reduced by self-shielding factor of 10

- High sampling rate enables us to perform detailed systematic studies
- Magnetic field fluctuations are the most significant uncertainty contribution



Number of Measurement



Measurement cycle is triggered by the antiproton injection into the AD One BASE charge-to-mass ratio measurement is by 50 times faster than achieved in previous proton/antiproton measurements.

First high-precision mass spectrometer which applies this fast shuttling technique



## The Antimatter "Clock"



• Experimental result:

$$R_{exp} = 1.001\ 089\ 218\ 872\ (64)$$

• Cyclotron frequency ratios for  $\overline{p}$ -to- $\overline{p}$  and H<sup>-</sup>-to-H<sup>-</sup>  $R_{id}$  are also evaluated

$$R_{id} - 1 = -3(79) \times 10^{-12}$$
 Consistent with 1



## **Systematic Corrections**

- Major systematic correction due to shift of particle in the magnetic B1 gradient caused by spin-flip bottle.
  - Particle shift and magnetic gradient can be determined very precisely

dR<sub>B1</sub> = -114(26) p.p.t.

- Slight re-adjustment of the trapping potential:  $dR_{C4} = -3(1) p.p.t.$ 

#### final experimental result: Rexp,c = 1.001 089 218 755 (64) (26)

 $\frac{(q/m)_{\overline{p}}}{(q/m)_{\overline{p}}} - 1 = 1(69) \times 10^{-12}$ 

- In agreement with CPT conservation
- Exceeds the energy resolution of previous result by a factor of 4.

#### most precise test of CPT invariance with baryons

# Antiproton charge-to-mass ratio

TRAP I: 100 protons vs. 100 antiprotons (40 ppb) Limit: Coulomb interaction

**TRAP II: 1 proton vs. 1 antiproton (1.1 ppb)** Limit: Magnetic field gradient "Trap Asymmetry"

TRAP III: Co-trapped negative hydrogen ion (H<sup>-</sup>) and antiproton (90 ppt) Limit: Magnetic field stability, extrapolation to zero energy

BASE I: Fast exchange of 1 H<sup>-</sup> ion and 1 antiproton
(69 ppt)
Limit: Magnetic field stability, trap asymmetry

$$\frac{(q/m)_{\bar{p}}}{(q/m)_p} + 1 = 1(64)(26) \times 10^{-12}$$



<sup>G. Gabrielse et al., Phys. Rev. Lett. 82, 3198 (1999).
G. Gabrielse, Int. J. Mass Spectr. 251, 273-280 (2006).
S. Ulmer, C. Smorra et al., Nature 524, 196-199 (2015).</sup> 



# **Diurnal Variations (LV)**

• Understanding: cosmological background field couples to particles -> Sidereal variations could be observed.



 Set limit of sidereal (diurnal) variations in proton/antiproton charge-to-mass ratios to < 0.72 ppb/day</li>

# E Antiproton gravitational redshift



• Constrain of the gravitation anomaly for antiprotons:

$$\frac{\omega_{c,p} - \omega_{c,\bar{p}}}{\omega_{c,p}} = -3(\alpha_g - 1) U/c^2$$

Our 69ppt result sets a new upper limit of

$$\alpha_g - 1 \mid < 8.7 \times 10^{-7}$$

S. Ulmer et al., Nature 524 196 (2015)

# Assuming that CPT Invariance holds, we can compare the proton/antiproton gravitational redshift.



### Progress – BT 2015

# Implementation of a self-shielded solenoid and increase of homogeneity in the measurement trap



RMS fluctuation of magnetic field improved by factor of 4.

With conditions of beamtime 2014 -> Q/M comparison at level of 10 ppt possible.



#### **Outlook - Simultaneously trapped particles**

• **Dave Pritchard scheme:** Perform simultaneous measurement on antiproton and hydrogen ion -> improved precision of q/m ratio



- During a measurement the particles will experience exactly the same magnetic field fluctuations -> ppt level.
- Systematics due to particle / particle interaction.
- Difficult. Requires further R'n'D.

Ultimate precision goal: 1ppt (several years)



## **Antiproton Magnetic Moment**

Beamtime 2015: Shuttling along entire trap stack (20cm/5s) established.

#### **Current situation:**



# **SE** Progress Analysis Trap 2015

In the magnetic bottle: need to resolve spin flip induced axial frequency jumps of 200mHz:





- Trap cleaning
- Ground loops
- RF tricks
- Feedback cooling

#### Cyclotron heating rate:

< 1 quantum transition in 240s In this case: Single spin flip resolution



### **Current Status**



Antibaryon density: ~  $10^8/cm^3$ V < (50  $\mu$ m)<sup>3</sup>

Baryon density: ~  $10^7/cm^3$ p <  $10^{-15}$  Pa

Loss/consumption rate: 1 particle/month

#### **Baryon Asymmetry Slightly Inverted**



### Goal 2016

#### **GOAL:**

• Apply double trap scheme to the antiproton





### Direct high-precision measurement of the magnetic moment of the proton

A. Mooser<sup>1,2</sup>†, S. Ulmer<sup>3</sup>, K. Blaum<sup>4</sup>, K. Franke<sup>3,4</sup>, H. Kracke<sup>1,2</sup>, C. Leiteritz<sup>1</sup>, W. Quint<sup>5,6</sup>, C. C. Rodegheri<sup>1,4</sup>, C. Smorra<sup>3</sup> & J. Walz<sup>1,2</sup>

A. Mooser, S. Ulmer, K. Blaum, K. Franke, H. Kracke, C. Leiteritz, W. Quint, C. Smorra, J.Walz, **Nature 509**, **596 (2014)** 

### g/2 = 2.792847350 (7) (6)







### Summary

- ...measured the magnetic moment of the proton with a fractional precision of 3.3ppb, which is the most precise measurement to date.
- ...established new collaboration at AD of CERN.
- ...commissioned an entirely new 4-Penning trap experiment (only running 4 trap experiment to date).
- ...invented reservoir trap technique for antiprotons
- ...applied fast shuttling and performed the **most precise test of CPT symmetry** with baryons using this new machine.
- ...prepared to improve this test to 10 p.p.t..
- ...current status: commissioning of antiproton magnetic moment measurement. Full 4 trap system running. Required frequency resolution for ppm achieved. GOAL: p.p.b. precision.



### **BASE Precision Measurements**

#### Magnetic Moment of the Proton





A. Mooser et al., Nature 509, 596 (2014)

S. Ulmer et al., Nature 524, 196 (2015)



C. Smorra et al., EPJ-Special Topics, The BASE Experiment, (2015)



#### **Thanks for your attention!**



S. Ulmer RIKEN



C. Smorra CERN / RIKEN

T. Higuchi

M. Borchert

U -Hannover

**RIKEN /** 



A. Mooser RIKEN



S. Sellner RIKEN



G. Schneider U - Mainz









M. Bersili RIKEN









MAX-PLANCK-GESELLSCHAFT









K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz, Y. Yamazaki



H. Nagahma

T. Tanaka Tokyo / RIKEN





