How to explain the existence of halo, clusters, quasi-molecular structures ?

Modeled from ab-initio approaches ?

Role of nuclear force and symmetries ?

Role of coupling to continuum?

clusters

8

- Does an island of extra-stability exist for superheavy nuclei ?
- Could we predict its location ?
- Could we synthesize new elements on earth ?
- Which chemical properties ?

Study of the spin orbit force using a bubble nucleus

O. Sorlin (GANIL, presently at CERN)

THE PITCH

The spin orbit (SO) force plays major role in nuclear structure to create shell gaps that give rise to magic nuclei.

SO force: postulated more than 60 years ago. Theoretical descriptions now exist but predictions differ for ab-normal nuclei

No experiment was yet able to test the SO force in 'extreme' conditions (superheavy elements, nuclear drip-line -> astrophysics)

We propose to use a **'bubble' nucleus** to test the properties of this SO force

Mardi 26 avril 2016 – LAL Orsay

Layout of the talk

Introduction on the atomic nucleus -> Charge density, orbital occupancies

Probe charge density in ³⁶S and ³⁴Si:knockout reactions at NSCL -> Central proton density depletion in ³⁴Si (i.e. bubble)

Introduction to the spin orbit (SO) force -> Properties and expectations

-> Use a bubble nucleus to constrain unknown properties

Reduced SO interaction between ³⁶S & ³⁴Si: (d,p) reaction at GANIL

Conclusions / consequences

'May the force be with you' Obi-Wan Kenobi *'Star Wars'*

Charge density of the nucleus : $\rho(r)$

Charge density of the nucleus : $\rho(r)$

Charge density depletion in the center of the ²⁰⁵Tl nucleus

Charge density depletion due to the change in $3s_{1/2}$ occupancy by 0.7 proton Independent particle model works rather well also in the interior of nucleus

Nuclear density

= superposition of radial vave functions with n,L values

Probing nuclear orbits with (e,e' p) reaction

Orbital labelling

n,L,J

n nodes (n=0,1,2) L angular momentum (s,p,d,f,g,h...) (-1)^L parity

|L-s|<J<|L+s| (2J+1) per shell

example : h_{11/2}: L=5, J=11/2, L and s aligned contains 12 nucleons

->Nucleons are arranged on shells

- -> Gaps are present for certain nucleon numbers
- $\rightarrow N_p$ detected follows orbit occupancy
- -> Quenching factor of occupancy by about 70%
- -> Mixing with collective states at high E* •
- -> Study limited (so far) to STABLE nuclei

Proton density depletion in ³⁴Si as compared to ³⁶S?

Amplitude of the central depletion depends on the change in $2s_{1/2}$ occupancy

But correlations can reduce the amplitude of this depletion

Probing proton density in³⁶S

Probing proton densities in ³⁶S

Knock-out reactions at $\beta \approx 0.4$ $\sigma(n,L) = C^2 S(j,n,L) \sigma_{sp}(j,S_p) R_S$ reaction theory occupancy 36S35p E d_{3/2} S_{1/2}

Gretina array: segmented Ge detectors

In-flight γ -ray detection-> Doppler corrections Segmented Ge cristals -> Interaction position

Probing proton densities in ³⁶S

Probing proton densities in ³⁶S

Quasi full filling of $s_{1/2}$ and $d_{5/2}$ orbits (within errors) Only few scattering to the upper $d_{3/2}$ orbital.

A. Mutschler et al. PRC (2016)

Proton density of ³⁶S

Probing proton densities in ³⁴Si

Probing proton densities in ³⁴Si

Very weak $2s_{1/2}$ occupancy -> large central density depletion

A. Mutschler et al. to be sumitted to Nature

Proton density depletion in ³⁴Si

Large change in $2s_{1/2}$ occupancy (1.8) -> central proton depletion in ³⁴Si -> 'bubble' nucleus But same neutron density profiles for the two N=20 nuclei

Simplified description of atomic nuclei

$$U(r) = \int_{vol} \rho(r') v(r, r') d^3 r' = \int_{vol} \rho(r') [-v_0 \partial(r - r')] d^3 r' = -v_0 \rho(r)$$

The spin-orbit (SO) interaction

Reduced SO for bubble and diffuse nuclei

Proton density depletion in ³⁴Si

Large change in $2s_{1/2}$ occupancy (1.8) -> central proton depletion in ³⁴Si -> 'bubble' nucleus But same neutron density profiles for the two N=20 nuclei

Proton energy -> (binding) energy of orbit Proton angle -> orbital momentum L Cross section -> vacancy of the orbit Appropriate momentum matching required

Evolution of the p_{3/2}-p_{1/2} SO splitting

No change in $p_{3/2}$ - $p_{1/2}$ splitting between ⁴¹Ca and ³⁷S Large reduction of $p_{3/2}$ - $p_{1/2}$ splitting between ³⁷S and ³⁵Si, no change of $f_{7/2}$ - $f_{5/2}$ *G. Burgunder et al. PRL 112 (2014) 042502*

Density and Isospin dependence of the SO interaction

Knockout reactions from ³⁶S and ³⁴Si beams at NSCL / MSU

- -> First 'evidence' of a significant central depletion in the atomic nucleus ³⁴Si
- -> Asymmetry between proton and neutron density depletions in ³⁴Si
- -> unique candidate to probe the spin-orbit interaction in 'unusual ' condition
- ³⁴Si(d,p)³⁵Si transfer reaction at GANIL
- -> Show a drastic reduction of SO interaction as compared to N=20 isotones

Better constraints on the models -> choose the correct one(s)

Evaluate the reduction of SO splitting when reaching the neutron drip-line

Consequence for the r-process nucleosynthesis -> neutron-star mergers

Location of 'stable' Super Heavy Elements to be revisited / better constrained ?