Direct and Indirect Searches of New Physics in Multi-Bosons Final States at ATLAS

Camilla Maiani LAL Orsay

09.02.2016

Séminaire LAL Orsay

Je Me Présente

Oct 2008 - Jan 2012

- * Ph.D. thesis at Rome University "La Sapienza"
 - title: $J/\psi \rightarrow \mu^+\mu^-$ cross-section and B-lifetime determination at ATLAS
 - supervisors: prof. Carlo Dionisi, prof. Stefano Giagu, doct. Marco Rescigno

- * Post-Doctorate at CEA Saclay
 - Diboson production for SM measurements and new physics searches at ATLAS

Oct 2015 - Sept 2017

Feb 2012 - Sept 2015

* Post-Doctorate at LAL Orsay

Searches for Higgs and Higgs-like resonances decaying to bb pairs

Overall view of the LHC experiments.

- Proton-proton collider
- 27 Km of circumference
- Four experiments at the four interaction points

Overall view of the LHC experiments.

- Proton-proton collider
- 27 Km of circumference
- Four experiments at the four interaction points

Overall view of the LHC experiments.

- Proton-proton collider
- 27 Km of circumference
- Four experiments at the four interaction points

THE ATLAS EXPERIMENT AT LHC

4

PHYSICS MOTIVATION: LHC RUN 1 LEGACY

PHYSICS MOTIVATION: MULTI-BOSON MEASUREMENTS ALLOW FOR...

- * Precision tests of the Standard Model
 - cross-section measurement
 - \rightarrow WY final state
- * Indirect searches for new physics
 - new physics → modifies Triple/Quartic Gauge
 Couplings (TGC, QGC)
 - \rightarrow WY and WYY final states
- * Direct searches for new physics
 - resonances decaying to multiboson final states
 - $\rightarrow X \rightarrow W/ZY$, $X \rightarrow VH \rightarrow vvb\overline{b}$
- Higgs measurements
 - \rightarrow first spin-parity measurement with $H \rightarrow ZZ \rightarrow 4\ell$

CHAPTER 1: INDIRECT SEARCHES

***** Direct searches

***** Other ways: using the Higgs

Indirect Searches via Anomalous TGC measurement

Measurement of TGCs

- study of di-boson production \rightarrow high stat, clean measurements
- gives access to new physics in the high energy range

***** Direct searches

***** Other ways: using the Higgs

How do we Measure TGCs

***** Goal: set limits on TGC parameters \rightarrow using WW, WZ, ZZ, WY ZY

- all parameters expected to be zero
- 🗱 Experimentally
 - we check deviations of the cross-section from the SM prediction
 - higher deviations are expected in the high energy range
 - maximum likelihood defined to set limits

$W\gamma$ Analysis Overview

- * Analyzing ATLAS 2011 dataset
- * Signal:

 $\mathbf{W} \mathbf{Y} \rightarrow \boldsymbol{\ell} \mathbf{V} \mathbf{Y} \; (\boldsymbol{\ell} = \mathbf{e}, \, \boldsymbol{\mu})$

- ***** Backgrounds estimated from data
 - W+jets, γ +jets \rightarrow ABCD method
- * Other backgrounds (from MC)
 - Drell-Yan, WW/WZ/ZZ, top
- * Main systematic uncertainties
 - Iuminosity ~3.9%
 - photon identification ~6%
 - jet energy scale ~2-3%
 - EM scale and resolution ~1.5-3%
 - will improve with more stats!

***** Indirect searches

- ***** Direct searches
- ***** Other ways: using the Higgs

ex-fid cross-section measurement [pb] Njet \ge 0: 2.77 ± 0.03 (stat.) ± 0.33 (syst.) ± 0.14 (lumi.) Njet \ge 0 (MCFM): 1.96 ± 0.17 Njet = 0: 1.76 ± 0.03 (stat.) ± 0.21 (syst.) ± 0.08 (lumi.) Njet = 0 (MCFM): 1.39 ± 0.13

aTGC extraction: $p_T(\gamma) > 100$ GeV, $N_{jet} = 0$

- ***** Direct searches
- ***** Other ways: using the Higgs

Limits Extraction

***** The likelihood function is a Poissonian depending on N_{obs} and N_{exp} :

 $N_{s}^{i}(\sigma_{W\gamma}^{tot}, \{x_{k}\}) = \sigma_{W\gamma}^{tot} A \cdot C \cdot \int \mathcal{L}(t) dt \cdot (1 + \sum_{k=1}^{n} x_{k}S_{k}^{i})$ SM cross-sec $(p_{0} + p_{1} * \lambda_{\gamma} + p_{2} * \Delta \kappa_{\gamma} + p_{3} * \lambda_{\gamma}^{2} + p_{4} * \lambda_{\gamma} * \Delta \kappa_{\gamma} + p_{5} * \Delta \kappa_{\gamma}^{2}) \cdot A \cdot C$

* TGC likelihood functions can have more than one minimum

Limits extraction

- using negative log-likelihood ratio
- applying frequentist procedure to look for 95% CLs interval

***** Direct searches

***** Other ways: using the Higgs

WY TGC LIMITS EXTRACTION

***** First measurement at such energies

- W $\gamma \rightarrow$ highest statistics channel
- sensitive to: λ_Y , Δk_Y
- still low sensitivity: the "interesting" range is
- a factor 10 away

```
\rightarrow \Delta \kappa_{Y} ~ 0.01 and \lambda_{Y} ~ 0.001
```

* Improvements

- analysing full 2012 data sample
- combining channels sensitive to the same couplings
- ▶ run at 13 TeV and 100 fb⁻¹ \rightarrow 2-3 years of data taking
- → publications: Phys. Rev. D 87, 11 (2013)

- ***** Direct searches
- ***** Other ways: using the Higgs

$W\gamma\gamma$ First Observation

***** Goal: First observation of triboson production

- Fiducial cross-section measurement
- Extraction of anomalous QGC limits
- ***** Using full 2012 ATLAS dataset, 20.3 fb⁻¹ of p-p collisions data, $\sqrt{s} = 8$ TeV
- * Main backgrounds:

WYY Results

* Indirect searches
* Direct searches
* Other ways: using the Higgs

- **★ Evidence** of WYY production at >3 σ in the inclusive case (N_{jet} \geq 0)
- ***** Limits are set at 95% CL on aQGC parameters \rightarrow fully compatible with SM

Cross-Section Measurement		MCFM@NLO
(Njet ≥ 0)	$\sigma^{\rm fid}(\ell\nu\gamma\gamma) = 6.1^{+1.1}_{-1.0}({\rm stat.}) \pm 1.2({\rm syst.}) \pm 0.2({\rm lumi.}){\rm fb}$	2.9 ± 0.16
(Njet = 0)	$\sigma^{\rm fid}(\ell\nu\gamma\gamma) = 2.9^{+0.8}_{-0.7}(\text{stat.})^{+1.0}_{-0.9}(\text{syst.}) \pm 0.1(\text{lumi.})\text{fb}$	1.88 ± 0.20

* My role:

- Cross-section extraction
- Responsible of the working team
- Editor of the publication

- → Phys. Rev. Lett. 115, 031802 (2015)
- → <u>CERN courier article</u>, last April issue

CHAPTER 2: DIRECT SEARCHES

***** Direct searches

* Other ways: using the Higgs

Direct Searches for Resonances Decaying To $W\gamma$

* Goal: perform model-independent searches for new resonances decaying to $W(\ell v)\gamma$ or $Z(\ell \ell)\gamma$ final states

***** Strategy:

- Study background composition in "SM" dominated region
- Perform signal+background fit on $m_T(W\gamma)$ for different signal massese
- Extract exclusion/discovery limits by using <u>ATLAS frequentist approach</u>

***** My role:

- Main author of Wγ analysis: from background estimates to statistical treatment
- \blacktriangleright Statistical treatment of ZY analysis
- Editor of the publication (PLB in preparation)

***** Direct searches

***** Other ways: using the Higgs

SIGNAL AND BACKGROUND MODELLING OVERVIEW

W γ signal pdf:

- optimized on benchmark MC samples
- Wγ background pdf:

• using background expectations (from MC and data driven estimates) to optimize the background shape

NB: the parameters used in the final limits extraction are taken from a **direct fit on data**

RESULTS

***** Indirect searches

***** Direct searches

***** Other ways: using the Higgs

* Extracting 95% CL limits

- exclusion for masses below 960 GeV in the W γ analysis
- exclusion for masses below about 900 GeV in the $Z\gamma$ analysis

→ Phys. Lett. B 738 (2014)

CHAPTER 3: HIGGS PARAMETERS MEASUREMENTS

***** Direct searches

***** Other ways: using the Higgs

HIGGS-CANDIDATE AS A PROBE TO LOOK FOR NEW PHYSICS

In summer 2012 a new Higgs-like particle is found

The discovery of the new Higgs-like particle prepares the path for a number of measurements

- * significance, mass and couplings
- ***** spin-parity

These allow to test the nature of the new particle \rightarrow is it a SM Higgs? Is it new physics? Does it point to new physics (CP violation terms, supersymmetric partners)?

Diboson channels play an important role in the Higgs parameter measurements

* $H \rightarrow ZZ^{(*)} \rightarrow 4l$ is very clean, and the full decay kinematic is measured

http://arxiv.org/pdf/1208.4018v1.pdf

***** Indirect searches

***** Direct searches

***** Other ways: using the Higgs

Observables and Separation Power

A 1D discriminant is defined from all the observables sensitive to J^P:

m₁, m₂, $\cos\theta^*$, ϕ_1 , $\cos\theta_1$, $\cos\theta_2$, ϕ

- In the Matrix Element approach (MELA):
- \rightarrow use **full theoretical description** of signal final states
- \rightarrow include corrections for detector/selection effects

***** Direct searches

***** Other ways: using the Higgs

Separations in $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

J^P-MELA discriminant:

 $J^{P}-MELA = \frac{P(H_{0})}{P(H_{0}) + P(H_{1})}$

- Test one hypothesis (H₀) against another one (H₁)
 - ★ assuming that the spin-parity is o⁺
 - ★ testing against non-SM hypotheses: 0⁻, 1[±], 2_m[±]

***** Direct searches

***** Other ways: using the Higgs

HIGGS SPIN CP MEASUREMENT

* **Results:** excluding spin-parity o⁻ and 1[±] at CL > 95%

→ favouring SM Higgs boson

* My role:

- development of the MELA framework
- understanding of detector acceptance and selection effects
- contribution to systematic uncertainties estimate
- extraction of signal/background hypotheses separations
- editor of the latest $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ spin-parity conference note

→ publications: ATLAS-CONF-2012-169, ATLAS-CONF-2013-013

Chapter 4: LHC Run 2 and $VH \rightarrow v\overline{v}b\overline{b}$

NEW BEGINNING: LHC RUN 2 HAS STARTED

The LHC Run 2 started in the spring, at ATLAS we collected **3.2 fb⁻¹** of integrated luminosity at pp center-of-mass energy of **13 TeV**

NEW BEGINNING: LHC RUN 2 HAS STARTED

The LHC Run 2 started in the spring, at ATLAS we collected **3.2 fb⁻¹** of integrated luminosity at pp center-of-mass energy of **13 TeV**

PHYSICS MOTIVATION AND STATE-OF-THE-ART

- * Looking for narrow resonances decaying to $VH(H \rightarrow b\overline{b})$
- * Focusing on the **boosted regime**
 - Signal benchmarks: A→ZH, Heavy Vector Triplets (HVT)

 $V' \rightarrow VH$

W/Z VV

V'

 $\bar{q}^{(\prime)}$

|±ν |+|-

ANALYSIS STRATEGY

- * Channels considered:
 - X→ZH→ℓℓbb (2-leptons)
 - X→WH→ℓvbb (1-lepton)
 - X→ZH→v⊽bb (o-leptons)
- → here focusing on o-lepton
- ★ Selecting events with

* My role:

- work on the optimization of the analysis
 selection in the o-lepton channel
- study of the MC modelling of the expected
 background and production of the inputs for the
 fit in the signal and control regions
- High transverse missing energy ($Z \rightarrow v\overline{v}$): MET > 200 GeV
- One "fat" jet (R = 1) of high transverse momentum (H candidate): p_T > 250 GeV
- B-tag at least once the highest p_T fat jet in the event
- Dominant backgrounds after selection
 - V+jets, ttbar (80-90% in the signal dominated regions)
 - single-top, diboson, SM Higgs

STATISTICAL PROCEDURE

C.Maiani 14.12.2015 ATLAS LAL group meeting

RESULTS

No statistically relevant excess found...

• Exclusion for masses up to ~1500 (2000) GeV for HVT model A (B) in $\nu\nu$ bb

• <u>Run-I exclusion</u> for V' \rightarrow VH model A with the combination of 0, 1 and 2lepton channels for masses up to 1500 GeV

→ publication: <u>ATLAS-CONF-2015-074 (2015)</u>

CONCLUSIONS

- Today I have shown you a small sample of searches for new physics brought on at ATLAS
 - * Using dibosons as a tool for testing the SM and uncovering new physics phenomena
- During the Run 2 phase, following this same path the focus will be, and is already, put on
 - * Searches for new physics at and above the TeV scale
 - * Precision measurements of the Higgs boson parameters

→ The VH-> $v\overline{v}b\overline{b}$ final state is expected to play an important role for both purposes

CONCLUSIONS

Overall the LHC results, from the SM precision measurements to direct searches for exotic particles, indicate that the Standard Model stands his ground The LHC Run 1 ended with:

- * an extraordinary result ! The discovery of a new particle compatible with a SM Higgs boson
- * no evidence of new physics...

...yet ! We just reached the TeV scale, but haven't quite explored it !

- There are many fundamental physics questions still open
 - * dark matter: new matter? new force?
 - \star naturalness and fine tuning problems \rightarrow new physics at the TeV scale

let's hope answers will be at reach during the LHC Run 2 !

BACKUP SLIDES

C.Maiani 09.02.2016 Séminaire LAL Orsay