

SIMON FRASER UNIVERSITY ENGAGING THE WORLD

1

Tau Physics at ATLAS: recent results and prospects

Quentin Buat - Simon Fraser University

Séminaires du LAL - February 2nd, 2016

Run1 legacy: success of the Standard Model

- Discovery of the Higgs boson by ATLAS and CMS, driven by the bosonic final states
- Couplings and CP measurements confirm agreement with the SM expectations

Run1 legacy: beyond the Standard Model?

No new physics, lot of constraints on models at the TeV scale

Α	TLAS Exotics S	Search	es* -	95%	6 CL	Exclusion			ATLA	S Preliminary
Sta	atus: July 2015							$\int \mathcal{L} dt = (4$	I.7 - 20.3) fb ^{−1}	\sqrt{s} = 7, 8 TeV
	Model	<i>ℓ</i> ,γ	Jets	E ^{miss} T	∫£ dt[fl	p ⁻¹]	Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH βP_T ADD BH high $\sum p_T$ ADD BH high multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow ZZ \rightarrow qq\ell\ell$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ Bulk RS $g_{KK} \rightarrow t\overline{t}$ 2UED / RPP	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2 \mu (SS) \\ \ge 1 e, \mu \\ - \\ 2 e, \mu \\ 2 \gamma \\ 2 e, \mu \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 2 e, \mu (SS) \end{array}$	$ \geq 1j - 1j 2j - 2j \geq 2j - 2j/1 J 2j/1 J 4b \geq 1 b, \geq 1J \geq 1 b, \geq 1 $	Yes - - - - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mp Ms Mth Mth Mth Mth Mth Mth GKK mass GKK mass GKK mass GKK mass GKK mass KY mass KK mass KK mass	2.68 TeV 2.66 TeV 2.66 TeV 2.66 TeV 500-720 GeV 500-720 GeV 2.2 TeV 960 GeV	5.25 TeV 4.7 TeV 5.2 TeV 5.82 TeV 4.7 TeV 5.8 TeV 5.8 TeV	$\begin{array}{l} n = 2 \\ n = 3 \; \text{HLZ} \\ n = 6 \\ n = 6 \\ n = 6, \; M_D = 3 \; \text{TeV}, \; \text{non-rot BH} \\ n = 6, \; M_D = 3 \; \text{TeV}, \; \text{non-rot BH} \\ n = 6, \; M_D = 3 \; \text{TeV}, \; \text{non-rot BH} \\ k / \overline{M}_{Pl} = 0.1 \\ k / \overline{M}_{Pl} = 0.1 \\ k / \overline{M}_{Pl} = 1.0 \\ k / \overline{M}_{Pl} = 1.0 \\ \text{BR} = 0.925 \end{array}$	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 1503.08988 1405.4123 1504.0511 1409.6190 1503.04677 1506.00285 1505.07018 1504.04605
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{EGM} W' \to WZ \to \ell\nu \ell'\ell' \\ \operatorname{EGM} W' \to WZ \to qq\ell\ell \\ \operatorname{EGM} W' \to WZ \to qqqq \\ \operatorname{HVT} W' \to WH \to \ell\nu bb \\ \operatorname{LRSM} W'_R \to t\overline{b} \\ \operatorname{LRSM} W'_R \to t\overline{b} \end{array}$	2 e, μ 2 τ 1 e, μ 3 e, μ 2 e, μ - 1 e, μ 1 e, μ 0 e, μ	- - 2 j / 1 J 2 J 2 b 2 b, 0-1 j ≥ 1 b, 1 s	- Yes Yes - Yes Yes	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass W' mass	2.9 TeV 2.02 TeV 3.24 T 1.52 TeV 1.59 TeV 1.3-1.5 TeV 1.47 TeV 1.92 TeV 1.76 TeV	V eV	$g_V = 1$	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 1506.00962 1503.08089 1410.4103 1408.0886
CI	Cl qqqq Cl qqℓℓ Cl uutt	 2 e,μ 2 e,μ (SS)	2 j ≥ 1 b, ≥ 1	– – j Yes	17.3 20.3 20.3	Λ Λ Λ		12.0 T 4.3 TeV	eV $\eta_{LL} = -1$ 21.6 TeV $\eta_{LL} = -1$ $ C_{LL} = 1$	1504.00357 1407.2410 1504.04605
DM	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, μ 0 e, μ	≥1j 1 J, ≤1j	Yes Yes	20.3 20.3	M. M.	974 GeV 2.4 TeV		at 90% CL for $m(\chi) < 100 \text{ GeV}$ at 90% CL for $m(\chi) < 100 \text{ GeV}$	1502.01518 1309.4017
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \end{array} $	– – j Yes	20.3 20.3 20.3	LQ mass LQ mass LQ mass	1.05 TeV 1.0 TeV 640 GeV		$ \begin{aligned} \beta &= 1 \\ \beta &= 1 \\ \beta &= 0 \end{aligned} $	Preliminary Preliminary Preliminary
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ T_{5/3} \rightarrow Wt \end{array} $	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ 1 e,μ	$ \begin{array}{l} \geq 2 \ \text{b}, \geq 3 \\ \geq 1 \ \text{b}, \geq 3 \\ \geq 2 \ \text{b}, \geq 3 \\ \geq 2 / \geq 1 \ \text{b} \\ \geq 1 \ \text{b}, \geq 5 \end{array} $	j Yes j Yes j Yes _ j Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 840 GeV		T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1503.05425
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$	1 γ 1 or 2 e, μ 2 e, μ, 1 γ 3 e, μ, τ	1 j 2 j 1 b, 2 j or ⁻ -	- - IjYes - -	20.3 20.3 4.7 13.0 20.3	q* mass q* mass b* mass ℓ* mass v* mass	3.5 4. 870 GeV 2.2 TeV 1.6 TeV	TeV 09 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e, μ (SS) 3 e, μ, τ 1 e, μ -	- 2 j - 1 b - -	Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0	a _T mass N ⁰ mass H ^{±±} mass H ^{±±} mass 44 spin-1 invisible particle mass multi-charged particle mass monopole mass	960 GeV 2.0 TeV 551 GeV 00 GeV 657 GeV 785 GeV 1.34 TeV		$\begin{split} m(W_R) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production, } \text{BR}(H_L^{\pm\pm} \to \ell\ell) = 1 \\ \text{DY production, } \text{BR}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ a_{\text{non-res}} &= 0.2 \\ \text{DY production, } q &= 5e \\ \text{DY production, } g &= 1g_D, \text{ spin } 1/2 \end{split}$	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 Preliminary
	$\sqrt{s} = 7 \text{ TeV}$	√s = 8 TeV				10 ⁻¹	1	1	⁾ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

Run2: 8 TeV \rightarrow 13 TeV

Increase of ~2 for 'common' processes, drives the trigger rates

Upgrading for two years

- New inner detector
 - Closest layer to the beam pipe.
- Trigger system upgrade
 - Increase L1 output rate from 75 to 100 kHz
 - New Central Trigger Processor
 - Merge L2 and HLT farms and additional ressources to increase output rate

Various other upgrade/consolidation

Insertable B Layer (IBL)

Back in business!

- Recorder 4.2fb⁻¹ of pp collisions, peak luminosity of 5.10³³ cm⁻² s⁻¹
- Very smooth operations, smaller dataset than expected

DAQ, Trigger

- DQ efficiency: 87%
 - main loss due to IBL off in 2 runs for safety reasons
- Luminosity: 3.2±0.2 fb⁻¹
 - Measured with vdM scans
- Very smooth trigger operations

Triggor	p _T Thresh	old (GeV)	Rate (Hz) *		
rigger	Run 1	Run 2	Run 1	Run 2	
Inclusive e	24	24	70	97	
Inclusive $\boldsymbol{\mu}$	24	20	45	130	
E _T ^{mis}	80	70	18	55	

 ΣE_{T} [GeV]

Tau Physics at the LHC

- The LHC is **<u>not</u>** a place to make precision measurements of the tau lepton
- As the heaviest lepton in the SM, the tau is a very useful probe of the EWSB mechanism:
 - Direct coupling the Higgs boson
 - Establishing the tau polarization in W/Z decays
 - Lepton Flavour Violation
- Many exotica and SUSY signatures involve taus, their discovery potential is usually weaker than signatures with light leptons (e/mu)

In this talk, instead of a broad review of the O(30) tau-related ATLAS results, I want to discuss the ATLAS strategy to <u>detect hadronically-decaying taus</u> and <u>highlight a few recent results</u>

Tau lepton at ATLAS

- $m_{\tau} = 1.777$ GeV, $c\tau = 87 \ \mu m$, decays: $\tau \rightarrow Iv$ (35%),
 - $\tau \rightarrow hadron(s) + v (65\%)$
- Leptonic tau decays are nearly indistinguishable from prompt light lepton
- Hadron collider vocabulary: <u>tau = hadronic decay</u> \approx <u>collection of π^{\pm} and π^{0} </u>

- Signature: calorimeter deposit associated with 1 or 3 tracks
- Reconstruction seeded by an anti-k_T jet algorithm with a radius of 0.4:
 - Core within 0.2, isolation ring [0.2, 0.4]
 - Tracks associated to the core or the isolation ring

Tau Energy Scale

- Seeded with an anti- k_T jet (dR=0.4) at the LC scale.
- MC-driven corrections to agree with the simulated true visible E_{T}
- Deconvolution method and in-situ Z→ττ measurement to provide a final ~1% correction and assert the systematic uncertainties:
 - ~2-3% for 1prong taus and 3-4% for 3prongs taus

Eur. Phys. J. C75 (2015) 303

Eur. Phys. J. C75 (2015) 303

Tau Identification

- Multivariate discriminant (BDT) based on a combinaison of calorimetric and track-based variables.
- Two discriminants trained separately for 1 prong and 3 prongs candidates
 - Very different calorimetric response, usage of displaced vertex possible in 3prongs
 - · Achieve an efficiency of 40% for a rejection of 60 (medium working point)

Tau Identification

- Very robust response agains pile-up obtained by explicitly correcting the input variables using $n_{\mbox{vtx}}$
- Agreement with data checked in $Z \rightarrow \tau \tau \rightarrow \mu \tau_h$ events
 - Scale factor deviates from unity by a few %

Eur. Phys. J. C75 (2015) 303

Triggering with taus?

- We try to avoid it but it is required for key signatures.
- Fully Hadronic final state: $BR(X \rightarrow \tau_h \tau_h) = 42\%$
 - Hadronic taus are the best trigger handle available
- Semi leptonic final state: $BR(X \rightarrow \tau_h \tau_l) = 46\%$
 - At low instantaneous luminosity, most searches can rely on the single lepton triggers
 - With the nominal Run2 setup, combined lepton + tau triggers will be required

ATLAS (Tau) Trigger System: Run1

Tau Trigger Run1 Performances

Efficiency wrt offline identified taus

ATLAS Trigger System: Run2 upgrade

- L1Topo: 128 items available for combination
- L1Calo:

Relative isolation cut

- L2/EF merger:
 - Topo-clustering available right at the L1 output.
 - Full tracking limited to the RoI
 - usually not fast enough to be run right at the L1 output (need a L2-like preselection)
- FTK:
 - Full scan of the tracking system right at the L1 output. Available in 2016...

Tau Trigger Run2 Performances

- Better performances than Run1
 - Relative Isolation at the L1
 - Cell-level precision available at the L1 output rate (EF/L2 merged)
 - HLT/offline ID menu harmonized

Tau Trigger Run2: Efficiency Measurement

- Tag&Probe analysis using $Z \rightarrow \tau \tau \rightarrow \mu \tau_h$ events: very good agreement with simulation
- Data/simulation scale-factors measured close to unity.

Tau Particle Flow

- Identify and classify the different hadronic decay modes:
 - Crucial information for decaydependent measurements
 - Improve the energy resolution

- **1.** Reconstruct and identify individual neutral pions within the tau energy deposit:
 - Estimate EM energy from charged pions using E_{trk} - E_{HAD} . Combine EM shower shape variables into a BDT do discriminate π_0 from pile-up and h± remnants cluster.
- 2. Using the first layer of the ECAL, attempt to disentangle cases where two neutral pions share the same cluster.
- 3. Combine with the charged information from the tracking system to classify the tau and measure its kinematic properties

Tau Particle Flow: Classification

- Efficient separation of decays with and without neutral pions
- A lot of 1p2n to 1p1n migration

Tau Particle Flow: Energy Resolution

- Decay classification allows a more reliable use of the tracking information to measure pT
- Huge gain in the core of the distribution
- Poor resolution in misclassified decays, need to combine with calo-only (run1 approach) method

Tau detection at ATLAS

- Run1 tau reconstruction was very successful and used for key ATLAS analysis
- Tau Energy Scale is measured within a few %
- Tau Identification algorithms have a good efficiency of (60% for the medium WP) with a powerful jet suppression allowing for tau final states to be detected
- Run2 tau reconstruction:
 - Successful commissioning (both offline and trigger)
 - Target to validate and use the new Tau Particle Flow strategy in 2016

Higgs coupling to fermions: $H \rightarrow \tau \tau$

- Large branching ratio
- Presence of leptons in the Final States (less background than H→bb)
- Only leptonic decay reachable by the LHC (H→µµ should be visible in HL-LHC)
- All the production modes reachable by the LHC

Does the 125 GeV boson decay to τ -lepton pairs ?

- Event categorized to target VBF and ggH production modes separately, all tau-decays considered
- MVA analysis to exploit most of the kinematic properties:
 - Boosted Decision Trees trained to separate the background from $H(125) \rightarrow \tau \tau$
 - Particularly powerful in the VBF category

τ-embedded data

- Z(→II)+jets measurements: large data/MC modelling
 - Require a sophisticated reweighing to model $Z(\rightarrow \tau \tau)$ +jets
- Using τ -embedded Z($\rightarrow \mu \mu$)+jets data:
 - very good modelling

- Run1 H \rightarrow tt heavily relies on MVA techniques
 - Improves the sensitivity from 2.5σ (cut-based) to 3.5σ
 - BDT trained to separate H(125) from the background, but also MissingMassCalculator, offline (and online!) BDT for tau ID, ...
- Higgs ML challenge
- New techniques could be investigated:
 - Deep Neural Networks are becoming more and more popular (winner of the Higgs ML challenge).
 - Potential applications in ATLAS: energy calibration, particle ID, jet substructure, sig/bkg separation...
 - Matrix Element techniques: expensive computing needs are becoming reachable with GPU clusters

Run 1 Analysis: results

 $\mu = 1.42^{+0.27}_{-0.26} \text{ (stat.)} {}^{+0.33}_{-0.25} \text{ (syst.)} \pm 0.1 \text{ (theory syst.)}$

- Observed (expected) significance: 4.5 (3.5) σ
- Measured signal strength consistent with the SM in all channels/categories

ATLAS Ir m _H = 125.36	nternal GeV	-σ(s -σ(s -σ(t	itatis iyst. heory	tical) excl. tl y)	heory)	Tota	l unce 1σ on	ertainty μ
H ightarrow au t	$\mu = 1.4^{+0.4}_{-0.4}$	- 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.1		i.				
Boosted	$\mu = 2.2^{+0.9}_{-0.8}$	+ 0.5	i.			- I.		
VBF	$\mu = 1.2^{+0.5}_{-0.4}$	+ 0.3	i	÷	-			
7 TeV (Combined	d) $\mu = 0.9^{+1.1}_{-1.1}$	+ 0.8 - 0.8	H		-			
8 TeV (Combined	d) $\mu = 1.5^{+0.5}_{-0.4}$	- 0.3			+			
$\textbf{H} \rightarrow \tau_{lep} \tau_{lep}$	$\mu = 2.1^{+0.9}_{-0.8}$	+ 0.7 - 0.7 - 0.6 - 0.5 - 0.5 - 0.1				-		
Boosted	$\mu=3.0^{+1.9}_{-1.7}$	+13 -13	. i				<u>.</u>	
VBF	$\mu = 1.8^{+1.1}_{-0.9}$	- 0.9 - 0.8		-		- 1		
$\textbf{H} \rightarrow \tau_{lep} \tau_{had}$	$\mu = 1.0^{+0.5}_{-0.5}$	+ 0.4 - 0.3 - 0.4 - 0.3 - 0.1 - 0.1						
Boosted	$\mu=0.9^{+1.0}_{-0.9}$	+ 0.6 - 0.6			-		÷.	
VBF	$\mu = 1.0^{+0.6}_{-0.5}$	- 0.5 - 0.4	i		1		. i.,	
$\textbf{H} \rightarrow \tau_{had} \tau_{had}$	$\mu = 2.0^{+0.9}_{-0.7}$	- 0.5 - 0.5 - 0.8 - 0.5 - 0.1 - 0.1			-	-		
Boosted	$\mu=3.6^{+2.0}_{-1.6}$	+ 1.0 - 0.9	i			-		+ E
VBF	$\mu = 1.4 \substack{+0.9 \\ -0.7}$	+ 0.6 - 0.5	. i	-				
s = 7 TeV, s = 8 TeV,	4.5 fb ⁻¹ 20.3 fb ⁻¹		0		2 Sigr	nal s	4 treng	gth (μ

ATLAS+CMS Higgs combination

- Combining with CMS, claim discovery (>5 σ) of the tau coupling to the 125 GeV Higgs
- $H \rightarrow \tau \tau$ brings strong constraints on k_F
- Similar constraint to $H \rightarrow WW$ to the VBF production mode.

H→ττ prospectives: Run2 and beyond

- Extension of the SM:
 - high mass search in the $\tau\tau$ final states
 - Lepton Flavour Violation
- Test the SM with <u>new</u> and <u>more precise</u> Higgs property measurements
 - Observation of the VH production mode
 - Inclusive and differential cross-section
 - Hff CP quantum numbers
 - HVV and ggH couplings in VBF
- Higgs self-coupling

H→ττ prospectives: Run2 and beyond

- Extension of the SM:
 - high mass search in the $\tau\tau$ final states
 - Lepton Flavour Violation
- Test the SM with <u>new</u> and <u>more precise</u> Higgs property measurements
 - Observation of the VH production mode
 - Inclusive and differential cross-section
 - Hff CP quantum numbers
 - HVV and ggH couplings in VBF
- Higgs self-coupling

Search for High Mass Neutral Higgs

- First ATLAS run2 results with taus
- Many extensions of the SM predict • an extended Higgs sector
- MSSM favours down-type fermion • couplings at high tan β
- ggH and associated-b productions are considered in this search

Search for High Mass Neutral Higgs

- Search performed in the hadronic channels
- Fake background estimated using datadriven techniques
- Z+jets, top and diboson from simulation

Search for High Mass Neutral Higgs

- In MSSM m_h^{mod+} , the strongest constraint is tan β >10 for m_A = 200 GeV
- For $m_A > 700$ GeV, the run1 result is superseded.

Lepton Flavour Violation: $H \rightarrow \tau \mu$

- LFV couplings can occur in many SM extensions
- BR(H \rightarrow eµ) < O(10⁻⁸): strong constraints from µ \rightarrow eγ searches
- BR(H \rightarrow $\tau\mu$) < O(10%): loosely constrained from $\tau \rightarrow \mu\gamma$ searches
- CMS H→τµ search has a slight excess of 2.4σ. They exclude BR(H→τµ) < 1.57% at 95% CL

Lepton Flavour Violation: $H \rightarrow \tau \mu$

- Analysis performed in the $\tau_h\mu$ final state
- Background estimation similar to the H→ττ analysis, dedicated tune of the mass estimator
- Slight excess corresponding to 1.3σ
- BR(H→τµ) < 1.85% at 95% CL.
 Weaker than CMS limit but no combination (yet) with the eµ channel.

$H \rightarrow \tau \tau$ prospectives: Run2 and beyond

- Extension of the SM:
 - high mass search in the $\tau\tau$ final states
 - Lepton Flavour Violation
- Test the SM with <u>new</u> and <u>more precise</u> Higgs property measurements
 - Observation of the VH production mode
 - Inclusive and differential cross-section
 - Hff CP quantum numbers
 - HVV and ggH couplings in VBF
- Higgs self-coupling

Higgs properties: VH→ττ

- Search carried in hadronic channels $VH \rightarrow \tau\tau$, still completely stat-dominated
- WH $\rightarrow \tau_h \tau_l$ is the most sensitive channel (also the least affected by Fakes)
- Run2 dataset should provide observation/exclusion of VH→ττ at the SM expected rate

Higgs properties: incl. and diff. cross-sections

- Get the 5σ (inclusively and per production mode)!
- Strong VBF signal in H→ττ
 - Good place to measure fiducial corrections that still have large O(6-10%) systematic uncertainties
- Probe High pT regime of the Higgs boson

 H+jets: Break degeneracy with a high-pt jet that resolves the top loop but not the NP-loop

Higgs properties: HVV vertex

- Probe HVV tensor structure by exploiting large VBF signal
- Run1 analysis in preparation:
 - Cut on the BDT score to select high VBF Higgs purity events

Proof of principle, analysis to be repeated with Run2 data

Higgs properties: Hff vertex

- Test CP of the Yukawa Hff coupling
- Access through spin correlation and angular distribution of tau decay products
- New Tau Particle flow will bring:
 - Mode-specific angle calculation. For example exploit the τ→ρ decay mode

Phys. Rev. D 92, 092004 (2015)

DiHiggs: HH→bbττ

- Sensitivity to the SM not expected before HL-LHC dataset
- DiHiggs search carried in bbWW, bbγγ, bbττ and bbbb final states
- Still room for a lot of improvements with HL-LHC upgrade
 - 1MHz L0, L1 tracking
 - High eta coverage

Analysis	$\gamma\gamma bb$	$\gamma\gamma WW^*$	bb au au	bbbb	Combined
	Upper limi	t on the cross s	ection relativ	re to the S	M prediction
Expected	100	680	130	63	48
Observed	220	1150	160	63	70

Things that go bump in the light*

- Deviation from the SM expectations observed around 750 GeV in the diphoton spectrum
- Using a narrow width resonance, the local p_0 is estimated at 3.6 σ (2.0 σ global)
- Width ~ 45 GeV
- Can we see it in the ditau final state?

Conclusion

- LHC Run1 program was very successful for tau physics
 - Observation of Higgs coupling to the tau lepton by ATLAS and CMS
- Successful energy upgrade of the LHC in 2015
 - Commissioning the tau trigger, validating the offline/online algorithms
 - Preliminary results supersede the Run1 limits on the MSSM Higgs at high $\mbox{tan}\beta$
- The 2016 dataset will allow for more precise measurements in $H \rightarrow \tau \tau$
 - Stay tuned!

Additional Material

Tau Energy Scale Uncertainties

- Tau Energy Scale uncertainties are calculated using the deconvolution method
- Uncertainties on particle energies taken from E/p measurements in low mu runs, test beam studies and simulation are propagated to the constituents of hadronic tau decays

Source	Uncertainty [%]
Response	1.2 - 2.5
Detector model	0.3 - 2.5
UE	0.2 - 2.4
Pile-up	0.5 - 2.0
Non-closure	0.5 - 1.2
Shower model	0.0 - 2.0
Total	1.8 - 3.9